Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 915237, 6 pages
http://dx.doi.org/10.1155/2013/915237
Research Article

Photoresponsive Wettability in Monolayer Films from Sinapinic Acid

Grupo de Materiais Nanoestruturados, Universidade Federal de Mato Grosso, 78600-000 Barra do Garças, MT, Brazil

Received 20 August 2013; Accepted 19 September 2013

Academic Editors: D. Devine and D. Hua

Copyright © 2013 Cleverson A. S. Moura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sharinpoor and H. J. Schneider, Intelligent Material, the Royal Society of Chemistry, Cambridge, UK, 2008.
  2. A. Chunder, K. Etcheverry, G. Londe, H. J. Cho, and L. Zhai, “Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control,” Colloids and Surfaces A, vol. 333, no. 1–3, pp. 187–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Mugele, M. Duits, and D. Van Den Ende, “Electrowetting: a versatile tool for drop manipulation, generation, and characterization,” Advances in Colloid and Interface Science, vol. 161, no. 1-2, pp. 115–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Wang, Y. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” Journal of Photochemistry and Photobiology C, vol. 8, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hoyer, W. Tuszynski, and C. Lienau, “Competing ultrafast photoinduced quenching reactions in cinnamic acid:peptide blends,” Physical Chemistry Chemical Physics, vol. 12, no. 40, pp. 13052–13060, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Jenkins, M. J. Almond, S. D. M. Atkinson et al., “The kinetics of the 2π+2π photodimerisation reactions of single-crystalline derivatives of trans-cinnamic acid: a study by infrared microspectroscopy,” Journal of Molecular Structure, vol. 786, no. 2-3, pp. 220–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. D. M. Atkinson, M. J. Almond, P. Hollins, and S. L. Jenkins, “The photodimerisation of the α- and β-forms of trans-cinnamic acid: a study of single crystals by vibrational microspectroscopy,” Spectrochimica Acta A, vol. 59, no. 3, pp. 629–635, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Hanai, A. Kuwae, T. Takai, H. Senda, and K.-K. Kunimoto, “Comparative vibrational and NMR study of cis-cinnamic acid polymorphs and trans-cinnamic acid,” Spectrochimica Acta A, vol. 57, no. 3, pp. 513–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Enkelmann and G. Wegner, “Single-crystal-to-single-crystal photodimerization of cinnamic acid,” Journal of the American Chemical Society, vol. 115, pp. 10390–10391, 1993. View at Publisher · View at Google Scholar
  10. G. Kaupp, “Solid-state reactions, dynamics in molecular crystals,” Current Opinion in Solid State and Materials Science, vol. 6, no. 2, pp. 131–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Hoyer, W. Tuszynski, and C. Lienau, “Ultrafast photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals,” Chemical Physics Letters, vol. 443, no. 1–3, pp. 107–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vengris, D. S. Larsen, M. A. Van Der Horst, O. F. A. Larsen, K. J. Hellingwerf, and R. Van Grondelle, “Ultrafast dynamics of isolated model photoactive yellow protein chromophores: “Chemical perturbation theory” in the laboratory,” Journal of Physical Chemistry B, vol. 109, no. 9, pp. 4197–4208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Brito, D. J. C. Gomes, V. D. Justina et al., “Nanostructured films from phthalocyanine and carbon nanotubes: surface morphology and electrical characterization,” Journal of Colloid and Interface Science, vol. 367, no. 1, pp. 467–471, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Jindasuwan, O. Nimittrakoolchai, P. Sujaridworakun, S. Jinawath, and S. Supothina, “Surface characteristics of water-repellent polyelectrolyte multilayer films containing various silica contents,” Thin Solid Films, vol. 517, no. 17, pp. 5001–5005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. S. Dewar and W. Thiel, “Ground states of molecules. 38. The MNDO method. Approximations and parameters,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 4899–4907, 1977. View at Publisher · View at Google Scholar
  17. M. A. Thompson, ArgusLab 4. 0. 1, WA, Planaria Software LLC, Seattle, Wash, USA, 2004.
  18. S. C. Elaoud, M. Panizza, G. Cerisola, and T. Mhiri, “Electrochemical degradation of sinapinic acid on a BDD anode,” Desalination, vol. 272, no. 1–3, pp. 148–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Nosonovsky and B. Bhushan, “Patterned Nonadhesive surfaces: superhydrophobicity and wetting regime transitions,” Langmuir, vol. 24, no. 4, pp. 1525–1533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Silva, F. F. Dall'Agnol, J. Oliveira, and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in mixed Langmuir-Blodgett (LB) films of azobenzene-containing polymers,” Polymer, vol. 43, no. 13, pp. 3753–3757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. Silva, N. C. de Souza, and O. N. Oliveira Jr., “Adsorption kinetics and charge inversion in layer-by-layer films from nickel tetrasulfonated phthalocyanine and poly(allylamine hydrochloride),” Journal of Non-Crystalline Solids, vol. 356, no. 18-19, pp. 937–940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Ma, X. Cao, X. Feng, Y. Ma, and H. Zou, “Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°,” Polymer, vol. 48, no. 26, pp. 7455–7460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, vol. 23, no. 13, pp. 7293–7298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L.-P. Xu, C.-J. Yan, L.-J. Wan, S.-G. Jiang, and M.-H. Liu, “Light-induced structural transformation in self-assembled monolayer of 4-(amyloxy)cinnamic acid investigated with scanning tunneling microscopy,” The Journal of Physical Chemistry B, vol. 109, pp. 14773–14778, 2005. View at Google Scholar
  25. J. Davaasambuu, G. Busse, and S. Techert, “Aspects of the photodimerization mechanism of 2,4-dichlorocinnamic acid studied by kinetic photocrystallography,” Journal of Physical Chemistry A, vol. 110, no. 9, pp. 3261–3265, 2006. View at Publisher · View at Google Scholar · View at Scopus