Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 931432, 5 pages
http://dx.doi.org/10.1155/2013/931432
Research Article

Echocardiographic Assessment of Cardiac Structural and Functional Indices in Broiler Chickens Treated with Silver Nanoparticles

1Postgraduate Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2Department of Veterinary Research, Isfahan Research Center for Agriculture and Natural Resources, P.O. Box 81785-199, Isfahan, Iran
3Department of Radiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Received 4 August 2013; Accepted 11 September 2013

Academic Editors: D. Endoh and J. Klein

Copyright © 2013 Hamid Raieszadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wadhera and M. Fung, “Systemic argyria associated with ingestion of colloidal silver,” Dermatology Online Journal, vol. 11, no. 1, pp. 11–12, 2005. View at Google Scholar · View at Scopus
  2. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Wright, K. Lam, and R. E. Burrell, “Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment,” American Journal of Infection Control, vol. 26, no. 6, pp. 572–577, 1998. View at Google Scholar · View at Scopus
  4. J. B. Wright, K. Lam, A. G. Buret, M. E. Olson, and R. E. Burrell, “Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing,” Wound Repair and Regeneration, vol. 10, no. 3, pp. 141–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Ross, A. J. Phipps, and J. A. Clarke, “The use of cerium nitrate-silver sulphadiazine as a topical burns dressing,” British Journal of Plastic Surgery, vol. 46, no. 7, pp. 582–584, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Caruso, K. N. Foster, M. H. E. Hermans, and C. Rick, “Aquacel Ag in the management of partial-thickness burns: results of a clinical trial,” Journal of Burn Care and Rehabilitation, vol. 25, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. K. C. Bhol and P. J. Schechter, “Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis,” British Journal of Dermatology, vol. 152, no. 6, pp. 1235–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Melaiye and W. J. Youngs, “Silver and its application as an antimicrobial agent,” Expert Opinion on Therapeutic Patents, vol. 15, no. 2, pp. 125–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” Journal of Nanobiotechnology, vol. 2, article 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mandal, S. Phadtare, and M. Sastry, “Interfacing biology with nanoparticles,” Current Applied Physics, vol. 5, no. 2, pp. 118–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Sawosz, M. Binek, M. Grodzik et al., “Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails,” Archives of Animal Nutrition, vol. 61, no. 6, pp. 444–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Crocetti and G. Miller, “Nano-silver: policy failure puts public health at risk,” Friends of the Earth Australia, 2011, http://innovationsgesellschaft.ch/.
  14. S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, “In vitro toxicity of nanoparticles in BRL 3A rat liver cells,” Toxicology in Vitro, vol. 19, no. 7, pp. 975–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M.-C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicological Sciences, vol. 88, no. 2, pp. 412–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. M. Hussain, A. K. Javorina, A. M. Schrand, H. M. H. M. Duhart, S. F. Ali, and J. J. Schlager, “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion,” Toxicological Sciences, vol. 92, no. 2, pp. 456–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Clement, “Pullet production gets nano-silver lining,” 2009, http://www.wattagnet.com/Pullet_production_gets_nano-silver_lining.html.
  18. A. Kitabatake, M. Inoue, M. Asao et al., “Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique,” Circulation, vol. 68, no. 2, pp. 302–309, 1983. View at Google Scholar · View at Scopus
  19. T. Masuyama, K. Kodama, A. Kitabatake et al., “Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure,” Circulation, vol. 74, no. 3, pp. 484–492, 1986. View at Google Scholar · View at Scopus
  20. M.-E. Krautwald-Junghanns and F. Enders, “Ultrasonography in birds,” Seminars in Avian and Exotic Pet Medicine, vol. 3, pp. 140–146, 1994. View at Google Scholar
  21. R. B. Devereux, D. R. Alonso, E. M. Lutas et al., “Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings,” American Journal of Cardiology, vol. 57, no. 6, pp. 450–458, 1986. View at Google Scholar · View at Scopus
  22. R. B. Devereux and N. Reichek, “Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method,” Circulation, vol. 55, no. 4, pp. 613–618, 1977. View at Google Scholar · View at Scopus
  23. L. A. Martinez-Lemus, M. W. Miller, J. S. Jeffrey, and T. W. Odom, “Echocardiographic evaluation of cardiac structure and function in Broiler and leghorn chickens,” Poultry Science, vol. 77, no. 7, pp. 1045–1050, 1998. View at Google Scholar · View at Scopus
  24. C. P. Nautrup and R. Tobias, Diagnostic Ultrasonography of the Dog and Cat, Manson, London, UK, 2000.
  25. M. Nyland and F. Matton, Small Animal Diagnostic Ultrasound, WB Saunders, Philadelphia, Pa, USA, 2002.
  26. J. S. Kim, E. Kuk, K. N. Yu et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine, vol. 3, no. 1, pp. 95–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Singh, S. Singh, S. Prasad, and S. Gambhir, “Nanotechnology in medicine and antibacterial effect of silver nanoparticles,” Digest Journal in Nanomaterials and Biostructures, vol. 3, pp. 115–122, 2008. View at Google Scholar
  28. K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Science of the Total Environment, vol. 373, no. 2-3, pp. 572–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mühling, A. Bradford, J. W. Readman, P. J. Somerfield, and R. D. Handy, “An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment,” Marine Environmental Research, vol. 68, no. 5, pp. 278–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Ahari, F. Dastmalchi, Y. Ghezelloo, R. Paykan, M. Fotovat, and J. Rahmannya, “The application of silver nano-particles to the reduction of bacterial contamination in poultry and animal production,” Food Manufacturing Efficiency, vol. 2, pp. 49–53, 2008. View at Google Scholar
  31. O. Choi, K. K. Deng, N.-J. Kim, L. Ross Jr., R. Y. Surampalli, and Z. Hu, “The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth,” Water Research, vol. 42, no. 12, pp. 3066–3074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. H. Sung, J. H. Ji, J. D. Park et al., “Subchronic inhalation toxicity of silver nanoparticles,” Toxicological Sciences, vol. 108, no. 2, pp. 452–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. T. W. Jordan and M. Pattison, Poultry Diseases, Elsevier Health Sciences, Amsterdam, The Netherlands, 4th edition, 2001.
  34. L. Akradi, I. Sohrabi Haghdoost, A. N. Djeddi, and P. Mortazavi, “Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens,” African Journal of Biotechnology, vol. 11, pp. 6207–6211, 2012. View at Google Scholar
  35. S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts et al., “Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Ahmadi and A. Hafsy Kordestany, “Investigation on silver retention in different organs and oxidative stress enzymes in male broiler fed diet supplemented with powder of nano silver,” American-Eurasian Journal of Toxicological Sciences, vol. 3, no. 1, pp. 28–35, 2011. View at Google Scholar
  37. J. F. van Vleet and V. J. Ferrans, “Etiologic factors and pathologic alterations in selenium-vitamin E deficiency and excess in animals and humans,” Biological Trace Element Research, vol. 33, no. 1, pp. 1–21, 1992. View at Google Scholar · View at Scopus
  38. N. L. Stedman and T. P. Brown, “Cardiomyopathy in broiler chickens congenitally infected with avian leukosis virus subgroup,” Veterinary Pathology, vol. 39, no. 1, pp. 161–164, 2002. View at Google Scholar · View at Scopus
  39. G. Deng, Y. Zhang, X. Peng, D. Guo, and C. Li, “Echocardiographic characteristics of chickens with ascites syndrome,” British Poultry Science, vol. 47, no. 6, pp. 756–762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. A. Martinez-Lemus, M. W. Miller, J. S. Jeffrey, and T. W. Odom, “Echocardiographic study of pulmonary hypertension syndrome in broiler chickens,” Avian Diseases, vol. 44, no. 1, pp. 74–84, 2000. View at Google Scholar · View at Scopus
  41. M. Pees, J. Straub, and M. E. Krautwald-Junghanns, “Pericardial effusion in birds. Demonstration of clinical cases,” in Proceedings of the Association of Avian Veterinarians Annual Conference, pp. 189–191, 2000.