Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 948617, 10 pages
http://dx.doi.org/10.1155/2013/948617
Research Article

Feature-Based Classification of Amino Acid Substitutions outside Conserved Functional Protein Domains

Centre for Multidisciplinary Research and Engineering, Vinca Institute of Nuclear Sciences, University of Belgrade, 12-14 Mihajla Petrovica Alasa, 11001 Belgrade, Serbia

Received 30 August 2013; Accepted 24 September 2013

Academic Editors: J. Golebiowski and J. Yu

Copyright © 2013 Branislava Gemovic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. R. Abecasis, A. Auton, L. D. Brooks et al., “An integrated map of genetic variation from 1,092 human genomes,” Nature, vol. 491, no. 7422, pp. 56–65, 2012. View at Publisher · View at Google Scholar
  2. J. Harrow, A. Frankish, J. M. Gonzalez et al., “GENCODE: the reference human genome annotation for the ENCODE Project,” Genome Research, vol. 22, no. 9, pp. 1760–1774, 2012. View at Publisher · View at Google Scholar
  3. G. R. Abecasis, D. Altshuler, A. Auton et al., “A map of human genome variation from population-scale sequencing,” Nature, vol. 467, no. 7319, pp. 1061–1073, 2010. View at Publisher · View at Google Scholar
  4. J. A. Tennessen, A. W. Bigham, T. D. O'Connor et al., “Evolution and functional impact of rare coding variation from deep sequencing of human exomes,” Science, vol. 337, no. 6090, pp. 64–69, 2012. View at Google Scholar
  5. D. Gonzalez de Castro, P. A. Clarke, B. Al-Lazikani, and P. Workman, “Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance,” Clinical Pharmacology and Therapeutics, vol. 93, no. 3, pp. 252–259, 2013. View at Publisher · View at Google Scholar
  6. D. M. Jordan, V. E. Ramensky, and S. R. Sunyaev, “Human allelic variation: perspective from protein function, structure, and evolution,” Current Opinion in Structural Biology, vol. 20, no. 3, pp. 342–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wu and R. Jiang, “Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases,” The Scientific World Journal, vol. 2013, Article ID 675851, 10 pages, 2013. View at Publisher · View at Google Scholar
  8. P. D. Thomas, M. J. Campbell, A. Kejariwal et al., “PANTHER: a library of protein families and subfamilies indexed by function,” Genome Research, vol. 13, no. 9, pp. 2129–2141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Capriotti, R. Calabrese, and R. Casadio, “Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information,” Bioinformatics, vol. 22, no. 22, pp. 2729–2734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. C. Ng and S. Henikoff, “Predicting deleterious amino acid substitutions,” Genome Research, vol. 11, no. 5, pp. 863–874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Li, V. G. Krishnan, M. E. Mort et al., “Automated inference of molecular mechanisms of disease from amino acid substitutions,” Bioinformatics, vol. 25, no. 21, pp. 2744–2750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Bromberg and B. Rost, “SNAP: predict effect of non-synonymous polymorphisms on function,” Nucleic Acids Research, vol. 35, no. 11, pp. 3823–3835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. A. Adzhubei, S. Schmidt, L. Peshkin et al., “A method and server for predicting damaging missense mutations,” Nature Methods, vol. 7, no. 4, pp. 248–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Luo and H. Nijveen, “Understanding and identifying amino acid repeats,” Briefings in Bioinformatics, 2013. View at Publisher · View at Google Scholar
  15. H.-B. Shen and K.-C. Chou, “PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition,” Analytical Biochemistry, vol. 373, no. 2, pp. 386–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Veljkovic, N. Veljkovic, J. A. Esté, A. Hüther, and U. Dietrich, “Application of the EIIP/ISM bioinformatics concept in development of new drugs,” Current Medicinal Chemistry, vol. 14, no. 4, pp. 441–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Glisic, P. Arrigo, D. Alavantic, V. Perovic, J. Prljic, and N. Veljkovic, “Lipoprotein lipase: a bioinformatics criterion for assessment of mutations as a risk factor for cardiovascular disease,” Proteins: Structure, Function and Genetics, vol. 70, no. 3, pp. 855–862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Hu, “Quantifying the effects of mutations on receptor binding specificity of influenza viruses,” Journal of Biomedical Science and Engineering, vol. 3, no. 3, pp. 227–240, 2010. View at Publisher · View at Google Scholar
  19. N. Nwankwo and H. Seker, “A signal processing-based Bioinformatics approach to assessing drug resistance: human Immunodeficiency Virus as a case study,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 1836–1839, Buenos Aires, Argentina, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. R. Perovic, C. P. Muller, H. L. Niman et al., “Novel phylogenetic algorithm to monitor human tropism in Egyptian H5N1-HPAIV reveals evolution toward efficient human-to-human transmission,” PLoS ONE, vol. 8, no. 4, Article ID e61572, 2013. View at Google Scholar
  21. M. Mancini, N. Veljkovic, E. Leo et al., “Cytoplasmatic compartmentalization by Bcr-Abl promotes TET2 loss-of-function in chronic myeloid leukemia,” Journal of Cellular Biochemistry, vol. 113, no. 8, pp. 2765–2774, 2012. View at Publisher · View at Google Scholar
  22. S. Kumar, J. T. Dudley, A. Filipski, and L. Liu, “Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations,” Trends in Genetics, vol. 27, no. 9, pp. 377–386, 2011. View at Google Scholar · View at Scopus
  23. P. Yue, W. F. Forrest, J. S. Kaminker, S. Lohr, Z. Zhang, and G. Cavet, “Inferring the functional effects of mutation through clusters of mutations in homologous proteins,” Human Mutation, vol. 31, no. 3, pp. 264–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Sant, C. Allemani, C. Tereanu et al., “Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project,” Blood, vol. 116, no. 19, pp. 3724–3734, 2010. View at Publisher · View at Google Scholar
  25. R. Bejar, K. Stevenson, O. Abdel-Wahab et al., “Clinical effect of point mutations in myelodysplastic syndromes,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2496–2506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Grossmann, A. Kohlmann, C. Eder et al., “Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance,” Leukemia, vol. 25, no. 5, pp. 877–879, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Guglielmelli, F. Biamonte, J. Score et al., “EZH2 mutational status predicts poor survival in myelofibrosis,” Blood, vol. 118, no. 19, pp. 5227–5234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. H. Metzeler, K. Maharry, M. D. Radmacher et al., “TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a cancer and leukemia group B study,” Journal of Clinical Oncology, vol. 29, no. 10, pp. 1373–1381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. H. Metzeler, H. Becker, K. Maharry et al., “ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category,” Blood, vol. 118, no. 26, pp. 6920–6929, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Thol, I. Friesen, F. Damm et al., “Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 29, no. 18, pp. 2499–2506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Walter, L. Ding, D. Shen et al., “Recurrent DNMT3A mutations in patients with myelodysplastic syndromes,” Leukemia, vol. 25, no. 7, pp. 1153–1158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Gelsi-Boyer, M. Brecqueville, R. Devillier, A. Murati, M.-J. Mozziconacci, and D. Birnbaum, “Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases,” Journal of Hematology & Oncology, vol. 5, article 12, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Tahiliani, K. P. Koh, Y. Shen et al., “Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1,” Science, vol. 324, no. 5929, pp. 930–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Okano, D. W. Bell, D. A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Kuzmichev, K. Nishioka, H. Erdjument-Bromage, P. Tempst, and D. Reinberg, “Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein,” Genes and Development, vol. 16, no. 22, pp. 2893–2905, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. H. W. Brock and C. L. Fisher, “Maintenance of gene expression patterns,” Developmental Dynamics, vol. 232, no. 3, pp. 633–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. H. Shih, O. Abdel-Wahab, J. P. Patel, and R. L. Levine, “The role of mutations in epigenetic regulators in myeloid malignancies,” Nature Reviews: Cancer, vol. 12, no. 9, pp. 599–612, 2012. View at Google Scholar
  38. A. M. Jankowska, H. Makishima, R. V. Tiu et al., “Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A,” Blood, vol. 118, no. 14, pp. 3932–3941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. C. Langemeijer, R. P. Kuiper, M. Berends et al., “Acquired mutations in TET2 are common in myelodysplastic syndromes,” Nature Genetics, vol. 41, no. 7, pp. 838–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. UniProt Consortium, “Update on activities at the Universal Protein Resource (UniProt) in 2013,” Nucleic Acids Research, vol. 41, no. D1, pp. D43–D47, 2013. View at Publisher · View at Google Scholar
  41. S. A. Forbes, N. Bindal, S. Bamford et al., “COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer,” Nucleic Acids Research, vol. 39, no. 1, pp. D945–D950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Veljković and I. Slavić, “Simple general-model pseudopotential,” Physical Review Letters, vol. 29, no. 2, pp. 105–107, 1972. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Gruber, J. Söding, and A. N. Lupas, “REPPER—repeats and their periodicities in fibrous proteins,” Nucleic Acids Research, vol. 33, no. 2, pp. W239–W243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Marsella, F. Sirocco, A. Trovato, F. Seno, and S. C. E. Tosatto, “REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform,” Bioinformatics, vol. 25, no. 12, pp. i289–i295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. D. Morin, N. A. Johnson, T. M. Severson et al., “Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin,” Nature Genetics, vol. 42, no. 2, pp. 181–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 40, no. D1, pp. D290–D301, 2012. View at Publisher · View at Google Scholar
  47. S. Hicks, D. A. Wheeler, S. E. Plon, and M. Kimmel, “Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed,” Human Mutation, vol. 32, no. 6, pp. 661–668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Veljkovic, S. Glisic, J. Prljic, V. Perovic, M. Botta, and V. Veljkovic, “Discovery of new therapeutic targets by the informational spectrum method,” Current Protein and Peptide Science, vol. 9, no. 5, pp. 493–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. P. F. Jonsson and P. A. Bates, “Global topological features of cancer proteins in the human interactome,” Bioinformatics, vol. 22, no. 18, pp. 2291–2297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Mintseris and Z. Weng, “Structure, function, and evolution of transient and obligate protein-protein interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 10930–10935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Vardiman, “The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms,” Chemico-Biological Interactions, vol. 184, no. 1-2, pp. 16–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Tokuriki and D. S. Tawfik, “Stability effects of mutations and protein evolvability,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 596–604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Yue, Z. Li, and J. Moult, “Loss of protein structure stability as a major causative factor in monogenic disease,” Journal of Molecular Biology, vol. 353, no. 2, pp. 459–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. González-Pérez and N. López-Bigas, “Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel,” American Journal of Human Genetics, vol. 88, no. 4, pp. 440–449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. X. Li, J. S. Kwan, S. Y. Bao et al., “Predicting mendelian disease-causing non-synonymous single nucleotide variants in exome sequencing studies,” PLoS Genetics, vol. 9, no. 1, Article ID e1003143, 2013. View at Publisher · View at Google Scholar
  56. J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano, “The FoldX web server: an online force field,” Nucleic Acids Research, vol. 33, supplement 2, pp. W382–W388, 2005. View at Publisher · View at Google Scholar
  57. V. Parthiban, M. M. Gromiha, and D. Schomburg, “CUPSAT: prediction of protein stability upon point mutations,” Nucleic Acids Research, vol. 34, supplement 2, pp. W239–W242, 2006. View at Publisher · View at Google Scholar
  58. S. Yin, F. Ding, and N. V. Dokholyan, “Eris: an automated estimator of protein stability,” Nature Methods, vol. 4, no. 6, pp. 466–746, 2007. View at Publisher · View at Google Scholar