Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 949603, 25 pages
http://dx.doi.org/10.1155/2013/949603
Research Article

The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

1Key Laboratory of Mineral Resource, Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China
2Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey, Guangzhou 510275, China
3Department of the Earth Science of Sun Yat-sen University, Guangzhou 510275, China

Received 26 June 2013; Accepted 4 August 2013

Academic Editors: N. Hirao, S. Lucas, K. Nemeth, and G. Zhao

Copyright © 2013 Hongzhong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Yang, Law and Prediction for Metallogenesis of Luoxiao-Wuyi Uplift and Chenzhou-Shangrao Sag, Geological press, Beijing, China, 1998.
  2. J. S. Ren, T. Y. Chen, Z. G. Liu, B. G. Niu, and F. R. Liu, “Several question to geotectonic in South China,” Chinese Sicence Bulletin, no. 1, pp. 49–51, 1986. View at Google Scholar
  3. J. S. Ren, “New view to geotectonic evolution of East China and its neighbouring area,” Regional Geology of China, no. 4, pp. 289–300, 1989. View at Google Scholar
  4. J. S. Ren, “On the geotectonocs of Southern China,” Acta Geological Sinica, vol. 64, no. 4, pp. 275–288, 1990. View at Google Scholar
  5. B. Xu, “Discussion on trench arc basin system in Northeast Jiangxi-South Anhui Province,” Acta Geologica Sinica, no. 1, pp. 33–41, 1990. View at Google Scholar
  6. L. Z. Guo, L. S. Shu, H. F. Lu et al., “A synthetical review on research advances on the terrane tectonics in China,” Journal of Nanjing University, vol. 36, no. 1, pp. 1–17, 2000. View at Google Scholar
  7. L. Z. Guo, S. Shi Yang, R. Ma, Y. S. Fu, and H. Lu, “Study on terrane structure in Southeast China,” Journal of Nanjing University, vol. 20, no. 4, pp. 732–737, 1984. View at Google Scholar
  8. D. G. Yu, T. Y. Guan, and G. F. Huang, Characteristics of Late Proterozoic Rift System and Formation and Evolution of Jinning-Caledon Sea Basin South(East) China, Atomic Energy Press, Beijing, China, 2000.
  9. C. M. Bao, H. G. Xu, and G. H. Chen, “The division and correlation of South China orogen stratigraphy and discussion of Nanhua system base boundary,” Resources Survey & Environment, vol. 23, no. 2, pp. 84–87, 2002. View at Google Scholar
  10. Y. Zeng and M. G. Yang, “Central Jiangxi collision melange zone,” Regional Geology of China, vol. 18, no. 1, pp. 17–22, 1999. View at Google Scholar
  11. J. H. Xu and Q. X. He, “Shell plate tectonic mode and collisional orogen,” Science in China A, no. 11, pp. 1081–1089, 1980. View at Google Scholar
  12. J. H. Xu, “Several questions of geotectonic in South China,” Geological Science and Technology Information, vol. 6, no. 2, pp. 13–27, 1987. View at Google Scholar
  13. L. J. Li Jiliang, S. S. Sun Shu, K. J. Hsu, C. H. Chen Haihong, P. H. Peng Haipo, and W. Q. Wang Qingchen, “New evidence about the evolution of the South Cathay orogenic belt,” Scientia Geologica Sinica, vol. 2, no. 3, pp. 217–225, 1989. View at Google Scholar · View at Scopus
  14. L. S. Shu, Y. S. Shi, L. Z. Guo, J. Charvet, and Y. Sun, Central Plate in Jiangnan—Terrane Structure and Collisional Orogeny Kinematics, Nanjing University Press, Nanjing, China, 1995.
  15. Z. X. Li, X. H. Li, P. D. Kinny, and J. Wang, “The breakup of Rodinia: did it start with a mantle plume beneath South China?” Earth and Planetary Science Letters, vol. 173, no. 3, pp. 171–181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Xie, R. S. Ma, Y. S. Zhang et al., Growth Process of South China Continental Crust and Mantle Plume Structure, Geological Press, Beijing, China, 1996.
  17. Tectonic map compiling group, Institute of geology, Academia sinica, “A preliminary note on the basic tectonic features and their developments in China,” Chinese Journal of Geology, no. 1, pp. 1–17, 1974. View at Google Scholar
  18. J. H. Xu, S. Sun, and J. L. Li, “Be orogen in South China, not South China platform,” Science in China B, vol. 17, no. 10, pp. 1107–1115, 1987. View at Google Scholar
  19. F. H. Lou, Z. Z. Huang, Z. R. Song, and X. H. Wu, “Geotectonic evolution modal of the middle-new proterozoic orogenic belt in the central part of South China,” Geological Survey and Research, vol. 26, no. 4, pp. 200–206, 2003. View at Google Scholar
  20. R. S. Ma, “New thought about the tectonic evolution of the South China: with discussion on several problems of the cathaysian old land,” Geological Journal of China Universities, vol. 12, no. 4, pp. 448–456, 2006. View at Google Scholar
  21. B. Xia, “A study on geochemical characteristic and emplaced style of two different ophiolites of later proterzoic xuefeng stage in the Longsheng regions, Guangxi Southeast China,” Journal of Nanjing University, no. 3, pp. 554–566, 1984. View at Google Scholar
  22. X.-H. Li, J.-X. Zhao, M. T. McCulloch, G.-Q. Zhou, and F.-M. Xing, “Geochemical and Sm-Nd isotopic study of neoproterozoic ophiolites from Southeastern China: petrogenesis and tectonic implications,” Precambrian Research, vol. 81, no. 1-2, pp. 129–144, 1997. View at Google Scholar · View at Scopus
  23. S. Peng, Z. Jin, J. Fu, L. He, M. Cai, and Y. Liu, “The geochemical evidences and tectonic significance of neoproterozoic ophiolite in Yunkai area, Western Guangdong Province, China,” Acta Geologica Sinica, vol. 80, no. 6, pp. 814–825, 2006. View at Google Scholar · View at Scopus
  24. X. M. Zhou and D. Z. Wang, “The peraluminous granodiorites with low initial ~(87)Sr/~(86)Sr ratio and their genesis in Southern Anhui Province, Eastern China,” Acta Petrologica Sinica, no. 3, pp. 37–45, 1988. View at Google Scholar
  25. X. M. Zhou, H. B. Zou, J. D. Yang, and Y. X. Wang, “Sm-Nd isochronous age of Fuchuan ophiolite suite in Shexian county, Anhui Province and its geological significance,” Chinese Science Bulletin, no. 3, p. 208, 1990. View at Google Scholar
  26. X. M. Zhou, Y. H. Zhu, and J. G. Chen, “Discovery of ultramafic obiculite and its genesis,” Chinese Science Bulletin, vol. 35, no. 8, pp. 604–606, 1990. View at Google Scholar
  27. H. R. Wu, “Tectonopalaeogeographic analysis of the geologic problems related to ophiolitic belt in Northeastern Jiangxi Province,” Journal of Palaeogeography, vol. 5, no. 3, pp. 328–342, 2003. View at Google Scholar
  28. C. Zhao, K. He, X. Mo et al., “Discovery and its significance of late paleozoic radiolarian silicalite in ophiolitic melange of Northeastern Jiangxi deep fault belt,” Chinese Science Bulletin, vol. 41, no. 8, pp. 667–670, 1996. View at Google Scholar · View at Scopus
  29. J. Zhou, X. Wang, J. Qiu, and J. Gao, “Lithogeochemistry of meso- and neoproterozoic mafic-ultramafic rocks from Northern Guangxi,” Acta Petrologica Sinica, vol. 19, no. 1, pp. 9–18, 2003. View at Google Scholar · View at Scopus
  30. X. F. Qin, F. S. Zhou, G. A. Hu et al., “First discovery of MORB volcanic rock and its tectonic significance on the North Margin of the Yunkai Block, Southeastern Guangxi,” Geological Science and Technology Information, vol. 24, no. 3, pp. 20–24, 2005. View at Google Scholar
  31. J. W. Mao, M. H. Chen, S. D. Yuan, and C. L. Guo, “Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of Mineral deposits,” Acta Geologica Sinica, vol. 85, no. 5, pp. 636–658, 2011. View at Google Scholar
  32. L. S. Shu, “Predevonian tectonic evolution of South China: from cathaysian block to caledonian period folded orogenic belt,” Geological Journal of China Universities, vol. 12, no. 4, pp. 418–431, 2006. View at Google Scholar
  33. M. G. Yang and Y. W. Mei, “Characteristics of geology and metallization in the Qinzhou-Hangzhou plaeoplate Juncture,” Geology and Mineral Resource of South China, vol. 9, no. 3, pp. 52–59, 1997. View at Google Scholar
  34. Z. R. Hu and G. H. Deng, “Tectonic characteristics of the Qinzhou-Hangzhou joint belt,” Journal of East China Institute of Technology, vol. 32, no. 2, pp. 114–122, 2009. View at Google Scholar
  35. X. F. Qin, Z. Q. Wang, Y. L. Zhang, L. Z. Pan, G. A. Hu, and F. S. Zhou, “Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt,” Acta Petrologica Sinica, vol. 27, no. 3, pp. 794–808, 2011. View at Google Scholar · View at Scopus
  36. Y. Z. Zhou, C. Y. Zeng, H. Z. Li et al., “Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou bay juncture orogenic belt,” Geological Bulletin of China, vol. 31, no. 2-3, pp. 32–37, 2012. View at Google Scholar
  37. J. Liang, H. Z. Li, and C. Y. Zeng, “Discussion on metallogenesis inhomogeneity of Qin-Hang metallogenic belt,” Geology and Tectonic, p. 288, 2011. View at Google Scholar
  38. H. Z. Li, Chert sedimentary system and its indications on tectonic evolution, petrogenesis and mineralization in Northern and Southern Margins of Yangtze Platform, China [Ph.D. dissertation], Sun Yat-Sen university, Guangzhou, China, 2012.
  39. J. Liang, Y. Z. Zhou, H. Z. Li et al., “Geological characteristics and genesis of porphyry copper deposits in Qin-Hang suture zone, South China,” Acta Petrologica Sinica, vol. 28, no. 10, pp. 3361–3372, 2012. View at Google Scholar
  40. S. Huang j, J. M. Ma D, and X. - Len, “The strontium isotopes of deep-sea siliceous rocks from earlier carboniferous to earlier permian, Qinzhou, Guangxi,” Acta Sedimentologica Sinica, vol. 17, no. 4, pp. 542–546, 1999. View at Google Scholar
  41. Y.-X. Qiu and X.-Q. Liang, “Evolution of basin-range coupling in the Yunkai Dashan-Shiwan Dashan area, Guangdong and Guangxi: with a discussion of several tectonic problems of South China,” Geological Bulletin of China, vol. 25, no. 3, pp. 340–347, 2006. View at Google Scholar · View at Scopus
  42. M. Baltuck, “Provenance and distribution of tethyan pelagic and hemipelagic siliceous sediments, pindos mountains, Greece,” Sedimentary Geology, vol. 31, no. 1, pp. 63–88, 1982. View at Google Scholar · View at Scopus
  43. R. W. Murray, M. R. B. Ten Brink, D. L. Jones, D. C. Gerlach, and P. G. Russ, “Rare earth elements as indicators of different marine depositional environments in chert and shale,” Geology, vol. 18, no. 3, p. 268, 1990. View at Google Scholar
  44. G. H. Girty, D. L. Ridge, C. Knaack, D. Johnson, and R. K. Al-Riyami, “Provenance and depositional setting of paleozoic chert and argillite, Sierra Nevada, California,” Journal of Sedimentary Research, vol. 66, no. 1, pp. 107–118, 1996. View at Google Scholar · View at Scopus
  45. H. Li, Y. Zhou, Z. Yang et al., “Geochemical characteristics and their geological implications of cherts from Bafangshan-Erlihe area in Western Qinling Orogen,” Acta Petrologica Sinica, vol. 25, no. 11, pp. 3094–3102, 2009. View at Google Scholar · View at Scopus
  46. H. Z. Li, Y. Z. Zhou, L. C. Zhang et al., “Study on geochemistry and development mechanism of proterozoic chert from Xiong'er group in Southern Region of North China craton,” Acta Petrologica Sinica, vol. 28, no. 11, pp. 3679–3691, 2012. View at Google Scholar
  47. Y. Zhou, W. Fu, Z. Yang et al., “Geochemical characteristics of mesozoic chert from Southern Tibet and its petrogenic implications,” Acta Petrologica Sinica, vol. 24, no. 3, pp. 600–608, 2008. View at Google Scholar · View at Scopus
  48. Y. T. Xu, “The origin and geochemical characteristics of sedimentary silicalites in dongxiang mine Jiangxi Province,” Acta Sedimentologica Sinica, vol. 15, no. 3, pp. 110–114, 1997. View at Google Scholar
  49. Y. T. Xu, “The geochemical characteristics of hydrothermal sediment chert of the late proterozoic era and their sedimentary environmental implication in Xiqiu area, Zhejiang Province,” Geochemistry, vol. 25, no. 6, pp. 600–608, 1996. View at Google Scholar
  50. X. Y. Xu Yuetong, “The geochemical characteristics of cherts in the Carboniferous period and their sedimentary environment implications,” Scientia Geological Sinica, vol. 33, no. 1, pp. 39–50, 1998. View at Google Scholar · View at Scopus
  51. H. F. Ling, B. T. Zhang, W. Z. Shen, and Z. H. Zhang, “Crustal Basement evolutionof the Zhejiang-Jiangxi portion of the Jiangnan proterozoic island arc zone,” Geotectonica et Metallogenia, vol. 17, no. 2, pp. 147–152, 1993. View at Google Scholar
  52. S. N. Yang, “Presinian palaeotectonic framework of Yangtse massif and its continental margin,” Jiangxi Geology, vol. 2, no. 2, pp. 167–175, 1988. View at Google Scholar
  53. X. K. Zhao, Z. Q. Yong, G. R. Li, X. B. Zhang, G. J. Deng, and K. Li, “Residual basin of passive continental margin-a neglected basin type,” Oil & Gas Geology, vol. 28, no. 1, pp. 121–128, 2007. View at Google Scholar
  54. C. M. Powell, Z. X. Li, and M. W. McElhinny, “Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana,” Geology, vol. 21, no. 10, pp. 889–892, 1993. View at Google Scholar · View at Scopus
  55. X. H. Li, X. C. Wang, W. X. Li, and Z. X. Li, “Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China from orogenesis to intracontinental rifting,” Geochemica, vol. 37, no. 4, pp. 382–398, 2008. View at Google Scholar
  56. H.-D. Chen, M.-C. Hou, W.-J. Liu, and J.-C. Tian, “Basin evolution and sequence stratigraphic framework of South of China during Hercynian cycle to Indo-Chinese epoch,” Journal of Chengdu University of Technology, vol. 31, no. 6, pp. 629–635, 2004. View at Google Scholar · View at Scopus
  57. Z. X. Li, L. H. Zhang, and C. M. Powell, “South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?” Geology, vol. 23, no. 5, pp. 407–410, 1995. View at Google Scholar · View at Scopus
  58. G. L. Zhang and G. C. He, “The tectonic geochemistry and prospecting characters of fault zone in Dongxiang copper deposit,” Geology and Prospecting, vol. 38, no. 6, pp. 22–24, 2002. View at Google Scholar
  59. Y. Z. Zhou, “Sedimentary geochemical characteristics of cherts of Danchi basin in Guangxi Province,” Acta Sedimentologica Sinica, no. 3, pp. 75–83, 1990. View at Google Scholar
  60. Guangdong Bureau of Geology and Mineral Resources, Regional Geology of Guangdong Province, Geological Publishing House, Beijing, China, 1988.
  61. Guangxi Zhuang Nationality Autonomous Region Bureau of Geology and Mineral Resources, Regional Geology of Guangxi Zhuang Nationality Autonomous Region, Geological Publishing House, Beijing, China, 1985.
  62. Hunan Bureau of Geology and Mineral Resources, Regional Geology of Hunan Province, Geological Publishing House, Beijing, China, 1988.
  63. Jiangxi Bureau of Geology and Mineral Resources, Regional Geology of Jiangxi Province, Geological Publishing House, Beijing, China, 1984.
  64. Zhejiang Bureau of Geology and Mineral Resources, Regional Geology of Zhejiang Province, Geological Publishing House, Beijing, China, 1989.
  65. S. M. Mclennan, “Rare earth elements in sedimentary rocks: influences of provenance and sedimentary processes. Geochemistry and mineralogy of rare earth elements,” in Reviews in Mineralogy, B. R. LiPin and G. A. McKay, Eds., vol. 21, pp. 169–200, 1989. View at Google Scholar
  66. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications, Oxford, UK, 1985.
  67. R. W. Murray, M. R. Buchholtz Ten Brink, D. C. Gerlach, G. Price Russ III, and D. L. Jones, “Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: assessing the influence of chemical fractionation during diagenesis,” Geochimica et Cosmochimica Acta, vol. 56, no. 7, pp. 2657–2671, 1992. View at Google Scholar · View at Scopus
  68. K. Boström and M. N. A. Peterson, “The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise,” Marine Geology, vol. 7, no. 5, pp. 427–447, 1969. View at Google Scholar · View at Scopus
  69. R. Sugisaki, K. Yamamoto, and M. Adachi, “Triassic bedded cherts in central Japan are not Pelagic,” Nature, vol. 298, no. 5875, pp. 644–647, 1982. View at Publisher · View at Google Scholar · View at Scopus
  70. P. A. Rona, “Hydrothermal mineralization at oceanic ridges,” Canadian Mineralogist, vol. 26, pp. 431–465, 1988. View at Google Scholar · View at Scopus
  71. G. L. Zhang and H. Y. Cai, “Discussion on origin of Dachang polymetallic ore deposit in Guangxi Province,” Geological Review, vol. 33, no. 5, pp. 426–436, 1987. View at Google Scholar
  72. K. Yamamoto, “Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes,” Sedimentary Geology, vol. 52, no. 1-2, pp. 65–108, 1987. View at Google Scholar · View at Scopus
  73. R. W. Murray, “Chemical criteria to identify the depositional environment of chert: general principles and applications,” Sedimentary Geology, vol. 90, no. 3-4, pp. 213–232, 1994. View at Google Scholar · View at Scopus
  74. M. Adachi, K. Yamamoto, and R. Sugisaki, “Hydrothermal chert and associated siliceous rocks from the Northern Pacific their geological significance as indication od ocean ridge activity,” Sedimentary Geology, vol. 47, no. 1-2, pp. 125–148, 1986. View at Google Scholar · View at Scopus
  75. T. Z. Tang Zhaohui and Z. Y. Zeng Yunfu, “Petrology, geochemistry and origin of cherts in the uraniferous formations, middle silurian, West Qinling range,” Acta Petrologica Sinica, vol. 2, pp. 62–71, 1990. View at Google Scholar · View at Scopus
  76. F. X. Zhang, “The recognition and exploration significance of exhalites related to Pb-Zn mineralizations in Devonian formations in Qinling mountains,” Geology and Prospecting, vol. 25, no. 5, pp. 11–18, 1989. View at Google Scholar
  77. B. L. Weaver and J. Tarney, “Empirical approach to estimating the composition of the continental crust,” Nature, vol. 310, no. 5978, pp. 575–577, 1984. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Marchig, H. Gundlach, P. Möller, and F. Schley, “Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments,” Marine Geology, vol. 50, no. 3, pp. 241–256, 1982. View at Google Scholar · View at Scopus
  79. J. M. Peter and S. D. Scott, “Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California,” Canadian Mineralogist, vol. 26, pp. 567–587, 1988. View at Google Scholar · View at Scopus
  80. K. M. Yarincik, R. W. Murray, T. W. Lyons, L. C. Peterson, and G. H. Haug, “Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe),” Paleoceanography, vol. 15, no. 6, pp. 593–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Boström, T. Kraemer, and S. Gartner, “Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic sediments,” Chemical Geology, vol. 11, no. 2, pp. 123–148, 1973. View at Google Scholar · View at Scopus
  82. S. H. Sun, H. Qing, Q. Q. X. Zhang et al., “Sedimentary geochemistry significance of Sr/Ba-V/NiIn new exploration of Mineral,” in Rock and Geochemistry, O. Z. Yuan, Ed., pp. 128–130, Earthquake Publishing House, Beijing, China, 1993. View at Google Scholar
  83. X. H. Li, “Geochemical characteristics of siliceous rock of Northeast Jiangxi Province and its tectonic significances,” Science in China D, vol. 30, no. 3, pp. 284–290, 2000. View at Google Scholar
  84. R. W. Murray, M. R. Buchholtz ten Brink, D. C. Gerlach, G. P. Russ III, and D. L. Jones, “Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP record,” Geochimica et Cosmochimica Acta, vol. 56, no. 5, pp. 1897–1913, 1992. View at Google Scholar · View at Scopus
  85. R. W. Murray, M. R. Buchholtz Ten Brink, D. C. Gerlach, G. P. Russ III, and D. L. Jones, “Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments,” Geochimica et Cosmochimica Acta, vol. 55, no. 7, pp. 1875–1895, 1991. View at Google Scholar · View at Scopus
  86. P. P. Sun and S. B. Ni, “REE characteristics of basic-ultrabasic rocks from the Jingbulake belt in Xinjiang,” Journal of University of Science and Technology of China, vol. 38, no. 4, pp. 347–355, 2008. View at Google Scholar
  87. H. Shimizu and A. Masuda, “Cerium in chert as an indication of marine environment of its formation,” Nature, vol. 266, no. 5600, pp. 346–348, 1977. View at Google Scholar · View at Scopus
  88. H.-Z. Li, Z.-J. Yang, Y.-Z. Zhou et al., “Microfabric characteristics of cherts of Bafangshan-Erlihe Pb-Zn ore field in the western Qinling orogen,” Earth Science, vol. 34, no. 2, pp. 299–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. H.-Z. Li, Y.-Z. Zhou, Z.-J. Yang et al., “Diagenesis and metallogenesis evolution of chert in west Qinling orogenic belt: a case from Bafangshan-Erlihe Pb-Zn ore deposit,” Journal of Jilin University, vol. 41, no. 3, pp. 715–723, 2011. View at Google Scholar · View at Scopus
  90. M. A. Carpenter, E. K. H. Salje, A. Graeme-Barber, B. Wruck, M. T. Dove, and K. S. Knight, “Calibration of excess thermodynamic properties and elastic constant variations associated with the α-β phase transition in quartz,” American Mineralogist, vol. 83, no. 1-2, pp. 2–22, 1998. View at Google Scholar · View at Scopus
  91. B. Olinger and P. M. Halleck, “The compression of quartz,” Journal of Geophysical Research, vol. 81, no. 32, pp. 5711–5714, 1976. View at Google Scholar · View at Scopus
  92. D. Y. Ge, H. X. Tian, and R. G. Zeng, Oryctognosy Concise Tutorial, Geological Press, Beijing, China, 2006.
  93. O. W. Flörke, B. Köhler-Herbertz, K. Langer, and I. Tönges, “Water in microcrystalline quartz of volcanic origin: agates,” Contributions to Mineralogy and Petrology, vol. 80, no. 4, pp. 324–333, 1982. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Z. Li, Y. Z. Zhou, Z. J. Yang et al., “A study of micro-area compositional characteristics and the evolution of cherts from Bafangshan-Erlihe Pb-Zn ore deposit in Western Qinling orogen,” Earth Science Frontiers, vol. 17, no. 4, pp. 290–298.
  95. Z. Z. Wang, D. Z. Chen, and J. G. Wang, “Element geochemistry and depositional setting of the chert in Devonian, nanning area, Guangxi,” Acta Sedimentologica Sinica, vol. 25, no. 2, pp. 239–245, 2007. View at Google Scholar
  96. H. Huang, G. Z. Wang, X. G. Tuo, Y. J. Wang, G. H. Long, and Y. Y. Chen, “Geochemistry characters and geological significance of the late paleozoic chert in jiangnan orogenic belt,” Bulletin of Mineralogy Petrology and Geochemistry, vol. 32, no. 5, pp. 567–573, 2013. View at Google Scholar
  97. Y. T. Tian, Q. L. Feng, and Q. Li, “The petrogenesis and sedimentary environment of the Bedded cherts from upper permian dalong formation, Southwest Guangxi,” Acta Sedimentologica Sinica, vol. 25, no. 5, pp. 671–677, 2007. View at Google Scholar
  98. K. A. Kormas, M. K. Tivey, K. von Damm, and A. Teske, “Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (°N, East Pacific Rise),” Environmental Microbiology, vol. 8, no. 5, pp. 909–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Furukawa and S. E. O'Reilly, “Rapid precipitation of amorphous silica in experimental systems with nontronite (NAu-1) and Shewanella oneidensis MR-1,” Geochimica et Cosmochimica Acta, vol. 71, no. 2, pp. 363–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. Y.-L. Li, K. O. Konhauser, D. R. Cole, and T. J. Phelps, “Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations,” Geology, vol. 39, no. 8, pp. 707–710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Zhang, B. Xia, H. Niu et al., “Metallogenic systems and belts developed on the late Paleozoic continental margin in Xinjiang,” Acta Petrologica Sinica, vol. 22, no. 5, pp. 1387–1398, 2006. View at Google Scholar · View at Scopus
  102. Y. Chen, “Fluidization model for continental collision in special reference to study ore-forming fluid of gold deposits in the eastern Qinling mountains, China,” Progress in Natural Science, vol. 8, no. 4, pp. 392–393, 1998. View at Google Scholar · View at Scopus
  103. J. C. Zhu, “A brief review for the study on genesis of the submarine volcanic exhalative sedimentary deposits in South China,” Geological Journal of China Universities, vol. 9, no. 4, pp. 536–544, 2003. View at Google Scholar
  104. R. W. Hutchinson, “Volcanogenic sulfide deposits and their metallogenic significance,” Economic Geology, vol. 68, pp. 1223–1246, 1973. View at Google Scholar
  105. Y. T. Xu, “Early Metallogenic geochemistry in the Yongping Cu-W Massive sulfide deposit,” Geotectonica et metallogenia, vol. 22, no. 1, pp. 55–64, 1998. View at Google Scholar
  106. L. X. Gu, “Genetic relationship between stratiform manganese ore and lead-zinc veinlets in the Lehua mine,” Geological Review, vol. 33, no. 3, pp. 267–274, 1987. View at Google Scholar
  107. T. Urabe and K. Marumo, “A new model for Kuroko-type deposits of Japan,” Episodes, vol. 14, no. 3, pp. 246–251, 1991. View at Google Scholar
  108. R. Large, M. Doyle, O. Raymond, D. Cooke, A. Jones, and L. Heasman, “Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania,” Ore Geology Reviews, vol. 10, pp. 215–230, 1996. View at Google Scholar · View at Scopus
  109. L. T. Du, “Sources of ore-forming material and genesis analysis of Yongping copper deposit,” Resource Environment & Engineering, vol. 19, no. 1, pp. 4–11, 2005. View at Google Scholar
  110. H. Ohmoto, “Stable isotope geochemistry of ore deposits,” Reviews in Mineralogy and Geochemistry, vol. 16, pp. 491–559, 1986. View at Google Scholar · View at Scopus
  111. J. Stolz and R. R. Large, “Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from Western Tasmania,” Economic Geology, vol. 87, no. 3, pp. 720–738, 1992. View at Google Scholar · View at Scopus
  112. S. Y. Wu, Study of Hydrothermal Chimneys in the Mariana Trough, China Ocean Press, Beijing, China, 1995.