Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 951343, 10 pages
http://dx.doi.org/10.1155/2013/951343
Research Article

Gene Therapy with HSV1-sr39TK/GCV Exhibits a Stronger Therapeutic Efficacy Than HSV1-TK/GCV in Rat C6 Glioma Cells

1Department of Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
2Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
3Department of Neurology, the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
4Department of Nuclear Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
5Department of Neurosurgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
6Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China

Received 5 January 2013; Accepted 29 January 2013

Academic Editors: W. Hall, D. Morris, and G. P. Siegal

Copyright © 2013 Lei-qing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ali, G. D. King, J. F. Curtin et al., “Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model,” Cancer Research, vol. 65, no. 16, pp. 7194–7204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Tamura, M. Tamura, K. Ikenaka et al., “Eradication of murine brain tumors by direct inoculation of concentrated high titer-recombinat retrovirus harboring the herpes simplex virus thymidine kinase gene,” Gene Therapy, vol. 8, no. 3, pp. 215–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kioi, S. R. Husain, D. Croteau, S. Kunwar, and R. K. Puri, “Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy,” Technology in Cancer Research and Treatment, vol. 5, no. 3, pp. 239–250, 2006. View at Google Scholar · View at Scopus
  4. M. E. Black, M. S. Kokoris, and P. Sabo, “Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing,” Cancer Research, vol. 61, no. 7, pp. 3022–3026, 2001. View at Google Scholar · View at Scopus
  5. M. S. Kokoris and M. E. Black, “Characterization of Herpes Simplex Virus type 1 thymidine kinase mutants engineered for improved ganciclovir or acyclovir activity,” Protein Science, vol. 11, no. 9, pp. 2267–2272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Balzarini, S. Liekens, N. Solaroli, K. El Omari, D. K. Stammers, and A. Karlsson, “Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation,” Journal of Biological Chemistry, vol. 281, no. 28, pp. 19273–19279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Pantuck, J. Matherly, A. Zisman et al., “Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants,” Human Gene Therapy, vol. 13, no. 7, pp. 777–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Wiewrodt, K. Amin, M. Kiefer et al., “Adenovirus-mediated gene transfer of enhanced Herpes simplex virus thymidine kinase mutants improves prodrug-mediated tumor cell killing,” Cancer Gene Therapy, vol. 10, no. 5, pp. 353–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. W. Candice, S. Django, and E. B. Margaret, “The role of herpes simplex virus-1 thymidine kinase alanine 168 in substrate specificity,” The Open Biochemistry Journal, vol. 2, pp. 60–66, 2008. View at Google Scholar
  10. W. A. Weber, “Use of PET for monitoring cancer therapy and for predicting outcome,” Journal of Nuclear Medicine, vol. 46, no. 6, pp. 983–995, 2005. View at Google Scholar · View at Scopus
  11. R. J. Hicks, “The role of PET in monitoring therapy,” Cancer Imaging, vol. 5, no. 1, pp. 51–57, 2005. View at Google Scholar · View at Scopus
  12. D. Delbeke, “Oncological applications of FDG PET imaging: brain tumors, colorectal cancer lymphoma and melanoma,” Journal of Nuclear Medicine, vol. 40, no. 4, pp. 591–603, 1999. View at Google Scholar · View at Scopus
  13. C. K. Hoh, M. A. Seltzer, J. Franklin, J. B. DeKernion, M. E. Phelps, and A. Belldegrun, “Positron emission tomography in urological oncology,” Journal of Urology, vol. 159, no. 2, pp. 347–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Fanciullino, A. Evrard, P. Cuq et al., “Genetic and biochemical modulation of 5-fluorouracil through the overexpression of thymidine kinase: an in-vitro study,” Anti-Cancer Drugs, vol. 17, no. 4, pp. 463–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. B. Li, Z. J. Zeng, Q. Chen, S. Q. Luo, and W. X. Hu, “Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer,” BMC Cancer, vol. 6, article 66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Som, H. L. Atkins, and D. Bandoypadhyay, “A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection,” Journal of Nuclear Medicine, vol. 21, no. 7, pp. 670–675, 1980. View at Google Scholar · View at Scopus
  17. T. Wakabayashi, M. Mizuno, and J. Yoshida, “Gene therapy of central nervous system tumors,” Neurologia Medico-Chirurgica, vol. 38, no. 11, pp. 763–771, 1998. View at Google Scholar
  18. K. Yazawa, W. E. Fisher, and F. C. Brunicardi, “Current progress in suicide gene therapy for cancer,” World Journal of Surgery, vol. 26, no. 7, pp. 783–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. W. Trask, R. P. Trask, E. Aguilar-Cordova et al., “Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with recurrent malignant brain tumors,” Molecular Therapy, vol. 1, no. 2, pp. 195–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Kruse, C. Lamb, S. Hogan, W. R. Smiley, B. K. Kleinschmidt-DeMasters, and F. J. Burrows, “Purified herpes simplex thymidine kinase retroviral particles. II. Influence of clinical parameters and bystander killing mechanisms,” Cancer Gene Therapy, vol. 7, no. 1, pp. 118–127, 2000. View at Google Scholar · View at Scopus
  21. A. M. Sandmair, S. Loimas, P. Puranen et al., “Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses,” Human Gene Therapy, vol. 11, no. 16, pp. 2197–2205, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. F. W. Floeth, N. Shand, H. Bojar et al., “Local inflammation and devascularization—in vivo mechanisms of the “bystander effect” in VPC-mediated HSV-Tk/GCV gene therapy for human malignant glioma,” Cancer Gene Therapy, vol. 8, no. 11, pp. 843–851, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Moriuchi, D. Wolfe, M. Tamura et al., “Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model,” Gene Therapy, vol. 9, no. 9, pp. 584–591, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. B. Elion, P. A. Furman, J. A. Fyfe, P. de Miranda, L. Beauchamp, and H. J. Schaeffer, “Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5716–5720, 1977. View at Google Scholar · View at Scopus
  25. G. B. Elion, “The chemotherapeutic exploitation of virus-specified enzymes,” Advances in Enzyme Regulation, vol. 18, pp. 53–66, 1980. View at Google Scholar · View at Scopus
  26. R. L. Davidson, E. R. Kaufman, C. S. Crumpacker, and L. E. Schnipper, “Inhibition of herpes simplex virus transformed and nontransformed cells by acycloguanosine: mechanisms of uptake and toxicity,” Virology, vol. 113, no. 1, pp. 9–19, 1981. View at Google Scholar · View at Scopus
  27. E. C. Mar, J. F. Chiou, Y. C. Cheng, and E. S. Huang, “Inhibition of cellular DNA polymerase α and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine,” Journal of Virology, vol. 53, no. 3, pp. 776–780, 1985. View at Google Scholar · View at Scopus
  28. L. Z. Rubsam, B. L. Davidson, and D. S. Shewach, “Superior cytotoxicity with ganciclovir compared with acyclovir and 1- β-D-arabinofuranosylthymine in herpes simplex virus-thymidine kinase- expressing cells: a novel paradigm for cell killing,” Cancer Research, vol. 58, no. 17, pp. 3873–3882, 1998. View at Google Scholar · View at Scopus
  29. D. Klatzmann, C. A. Valéry, G. Bensimon et al., “A phase I/II study of herpes simplex virus type 1 thymidine kinase 'Suicide' gene therapy for recurrent glioblastoma,” Human Gene Therapy, vol. 9, no. 17, pp. 2595–2604, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Shand, F. Weber, L. Mariani et al., “A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir,” Human Gene Therapy, vol. 10, no. 14, pp. 2325–2335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Prados, M. McDermott, S. M. Chang et al., “Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial,” Journal of Neuro-Oncology, vol. 65, no. 3, pp. 269–278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Immonen, M. Vapalahti, K. Tyynelä et al., “AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study,” Molecular Therapy, vol. 10, no. 5, pp. 967–972, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. I. M. Germano, J. Fable, S. H. Gultekin, and A. Silvers, “Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas,” Journal of Neuro-Oncology, vol. 65, no. 3, pp. 279–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. E. Black, T. G. Newcomb, H. M. P. Wilson, and L. A. Loeb, “Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, pp. 3525–3529, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Rozental, R. L. Levine, R. J. Nickles, and J. A. Dobkin, “Glucose uptake by gliomas after treatment. A positron emission tomographic study,” Archives of Neurology, vol. 46, no. 12, pp. 1302–1307, 1989. View at Google Scholar · View at Scopus
  36. U. Haberkorn, A. Altmann, I. Morr, C. Germann, F. Oberdorfer, and G. Van Kaick, “Multitracer studies during gene therapy of hepatoma cells with herpes simplex virus thymidine kinase and ganciclovir,” Journal of Nuclear Medicine, vol. 38, no. 7, pp. 1048–1054, 1997. View at Google Scholar · View at Scopus
  37. U. Haberkorn, M. Reinhardt, L. G. Strauss et al., “Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy,” Journal of Nuclear Medicine, vol. 33, no. 11, pp. 1981–1987, 1992. View at Google Scholar · View at Scopus
  38. T. Miyagawa, T. Oku, T. Sasajima et al., “Assessment of treatment response by autoradiography with 14C-aminocyclopentane carboxylic acid, 67Ga-DTPA, and 18F-FDG in a herpes simplex virus thymidine kinase/ganciclovir brain tumor model,” Journal of Nuclear Medicine, vol. 44, no. 11, pp. 1845–1854, 2003. View at Google Scholar · View at Scopus
  39. S. S. Gambhir, E. Bauer, M. E. Black et al., “A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2785–2790, 2000. View at Publisher · View at Google Scholar · View at Scopus