Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 969281, 9 pages
http://dx.doi.org/10.1155/2013/969281
Clinical Study

Cardiovascular Risk Assessment: A Comparison of the Framingham, PROCAM, and DAD Equations in HIV-Infected Persons

1Postgraduate Studies Program, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil
2Department of Medicine, Catholic University of Goiás, Brazil
3Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil
4National Institute for Health Technology Assessement, Brazil
5School of Nutrition, Federal University of Goiás, Brazil
6Postgraduate Studies Program in Health Sciences, School of Medicine, Federal University of Goiás, Brazil

Received 31 July 2013; Accepted 28 August 2013

Academic Editors: S. C. Fuchs, M. B. Moreira, and B. Oyeledun

Copyright © 2013 Max Weyler Nery et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mocroft, B. Ledergerber, C. Katlama et al., “Decline in the AIDS and death rates in the EuroSIDA study: an observational study,” The Lancet, vol. 362, no. 9377, pp. 22–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. C. Quinn, “HIV epidemiology and the effects of antiviral therapy on long-term consequences,” AIDS, vol. 3, supplement 22, pp. S7–S12, 2008. View at Publisher · View at Google Scholar
  3. J. S. Montaner, V. D. Lima, R. Barrios et al., “Association of highly active antiretroviral therapy coverage, population viral load, and yearly new HIV diagnoses in British Columbia, Canada: a population-based study,” The Lancet, vol. 376, no. 9740, pp. 532–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. UNAIDS, Global AIDS Response Progress Reporting: Monitoring the 2011 Political Declaration on HIV/AIDS: Guidelines on Construction of Core Indicators, 2012.
  5. I. Dourado, M. A. Veras, D. Barreira, and A. M. de Brito, “AIDS epidemic trends after the introduction of antiretroviral therapy in Brazil,” vol. 40, supplement 9–17, pp. 9–17, 2006. View at Google Scholar
  6. M. Malta, F. I. Bastos, C. M. F. P. da Silva et al., “Differential survival benefit of universal HAART access in Brazil: a nation-wide comparison of injecting drug users versus men who have sex with men,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 5, pp. 629–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. P. Dube and J. J. Cadden, “Lipid metabolism in treated HIV infection,” Best Practice & Research, vol. 25, no. 3, pp. 429–442, 2011. View at Google Scholar
  8. J. A. Aberg, “Cardiovascular complications in HIV management: past, present, and future,” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 1, pp. 54–64, 2009. View at Publisher · View at Google Scholar
  9. J. H. Stein, “Cardiovascular risk and dyslipidemia management in HIV-infected patients,” Topics in Antiviral Medicine, vol. 20, no. 4, pp. 129–133, 2012. View at Google Scholar
  10. S. W. Worm and J. D. Lundgren, “The metabolic syndrome in HIV,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 25, no. 3, pp. 479–486, 2011. View at Publisher · View at Google Scholar
  11. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Google Scholar · View at Scopus
  12. M. P. Dubé, J. H. Stein, J. A. Aberg et al., “Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medicine Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group,” Clinical Infectious Diseases, vol. 37, no. 5, pp. 613–627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. D. Lundgren, M. Battegay, G. Behrens et al., “European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV,” HIV Medicine, vol. 9, no. 2, pp. 72–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Knobel, C. Jericó, M. Montero et al., “Global cardiovascular risk in patients with HIV infection: concordance and differences in estimates according to three risk equations (Framingham, SCORE, and PROCAM),” AIDS Patient Care and STDs, vol. 21, no. 7, pp. 452–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. E. Vrentzos, J. A. Papadakis, E. S. Ganotakis et al., “Predicting coronary heart disease risk using the Framingham and PROCAM equations in dyslipidaemic patients without overt vascular disease,” International Journal of Clinical Practice, vol. 61, no. 10, pp. 1643–1653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. F. Silva, K. C. Bassichetto, and D. S. Lewi, “Lipid profile, cardiovascular risk factors and metabolic syndrome in a group of AIDS patients,” Arquivos Brasileiros de Cardiologia, vol. 93, no. 2, pp. 113–118, 2009. View at Publisher · View at Google Scholar
  17. P. Cahn, O. Leite, A. Rosales et al., “Metabolic profile and cardiovascular risk factors among Latin American HIV-infected patients receiving HAART,” Brazilian Journal of Infectious Diseases, vol. 14, no. 2, pp. 158–166, 2010. View at Google Scholar · View at Scopus
  18. N. Friis-Moller, R. Thiebaut, P. Reiss, R. Weber, A. D. Monforte, S. De Wit et al., “Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 17, no. 5, pp. 491–501, 2010. View at Publisher · View at Google Scholar
  19. M. M. M. Guimarães, D. B. Greco, R. B. Fóscolo, and L. J. D. C. Machado, “Coronary heart disease risk assessment in HIV-infected patients: a comparison of Framingham, PROCAM and SCORE risk assessment functions,” International Journal of Clinical Practice, vol. 64, no. 6, pp. 739–745, 2010. View at Publisher · View at Google Scholar
  20. N. Önen, E. Overton, W. Seyfried et al., “Aging and HIV infection: a comparison between older HIV-infected persons and the general population,” HIV Clinical Trials, vol. 11, no. 2, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Pullinger, B. E. Aouizerat, C. Gay, T. Coggins, I. Movsesyan, H. Davis et al., “Metabolic abnormalities and coronary heart disease risk in human immunodeficiency virus-infected adults,” Metabolic Syndrome and Related Disorders, vol. 8, no. 3, pp. 279–286, 2010. View at Google Scholar
  22. N. Edwards-Jackson, S. J. Kerr, H. V. Tieu et al., “Cardiovascular risk assessment in persons with HIV infection in the developing world: comparing three risk equations in a cohort of HIV-infected Thais,” HIV Medicine, vol. 12, no. 8, pp. 510–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Kaplan, L. A. Kingsley, A. R. Sharrett, X. Li, J. Lazar, P. C. Tien et al., “Ten-year predicted coronary heart disease risk in HIV-infected men and women,” Clinical Infectious Diseases, vol. 45, no. 8, pp. 1074–1081, 2007. View at Google Scholar
  24. E. M. O. Lima, D. M. Gualandro, P. C. Yu et al., “Cardiovascular prevention in HIV patients: results from a successful intervention program,” Atherosclerosis, vol. 204, no. 1, pp. 229–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. M. Barros, R. A. De Alencar Ximenes, D. B. Miranda-Filho et al., “Comparison between the Framingham and Prospective Cardiovascular of Münster scores for risk assessment of coronary heart disease in human immunodeficiency virus-positive patients in Pernambuco, Brazil,” Metabolic Syndrome and Related Disorders, vol. 8, no. 6, pp. 489–497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Friis-Moller and S. W. Worm, “Can the risk of cardiovascular disease in HIV-infected patients be estimated from conventional risk prediction tools?” Clinical Infectious Diseases, vol. 45, no. 8, pp. 1082–1084, 2007. View at Google Scholar
  27. R. B. D'Agostino Sr., “Cardiovascular risk estimation in 2012: lessons learned and applicability to the HIV population,” The Journal of Infectious Diseases, vol. 205, 3, pp. S362–S367.
  28. SBC/SBH/SBN, “VI diretrizes brasileiras de hipertensão,” Arquivos Brasileiros De Cardiologia, vol. 95, pp. 1–51, 2010. View at Google Scholar
  29. P. Zimmet, K. G. MMA, and M. S. Rios, “A new international diabetes federation worldwide definition of the metabolic syndrome: the rationale and the results,” Revista Española de Cardiología, vol. 58, no. 12, pp. 1371–1376, 2005. View at Google Scholar
  30. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  31. SBC, “IV diretriz brasileira sobre dislipidemias e prevenção da aterosclerose. Departamento de aterosclerose da sociedade brasileira de cardiologia,” Arquivos Brasileiros de Cardiologia, vol. 88, 2007. View at Google Scholar
  32. P. M. Ridker, “Clinical application of C-reactive protein for cardiovascular disease detection and prevention,” Circulation, vol. 107, no. 3, pp. 363–369, 2003. View at Google Scholar
  33. American Diabetes, “Standards of medical care in diabetes,” Diabetes Care, supplement 1, pp. S15–S35, 2004. View at Google Scholar
  34. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Google Scholar · View at Scopus
  35. G. L. Myers, W. G. Miller, J. Coresh, J. Fleming, N. Greenberg, T. Greene et al., “Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program,” Clinical Chemistry, vol. 52, no. 1, pp. 5–18, 2006. View at Google Scholar
  36. J. M. Ginsberg, B. S. Chang, R. A. Matarese, and S. Garella, “Use of single voided urine samples to estimate quantitative proteinuria,” The New England Journal of Medicine, vol. 309, no. 25, pp. 1543–1546, 1983. View at Google Scholar · View at Scopus
  37. M. E. Molitch, R. A. DeFronzo, M. J. Franz et al., “Diabetic nephropathy,” Diabetes Care, vol. 22, no. 1, pp. S66–S69, 1999. View at Google Scholar · View at Scopus
  38. K. M. Anderson, P. W. F. Wilson, P. M. Odell, and W. B. Kannel, “An updated coronary risk profile. A statement for health professionals,” Circulation, vol. 83, no. 1, pp. 356–362, 1991. View at Google Scholar · View at Scopus
  39. G. Assmann, P. Cullen, and H. Schulte, “Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) study,” Circulation, vol. 105, no. 3, pp. 310–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. P. van Wijk and M. C. Cabezas, “Hypertriglyceridemia, metabolic syndrome, and cardiovascular disease in HIV-infected patients: effects of antiretroviral therapy and adipose tissue distribution,” International Journal of Vascular Medicine, vol. 2012, 2012. View at Publisher · View at Google Scholar
  41. S. W. Worm, D. A. Kamara, P. Reiss, O. Kirk, W. El-Sadr, C. Fux et al., “Elevated triglycerides and risk of myocardial infarction in HIV-positive persons,” AIDS, vol. 25, no. 12, pp. 1497–1504, 2011. View at Google Scholar
  42. M. W. Nery, C. M. Martelli, and M. D. Turchi, “Dyslipidemia in AIDS patients on highly active antiretroviral therapy,” Brazilian Journal of Infectious Diseases, vol. 15, no. 2, pp. 151–155.
  43. M. Miller, N. J. Stone, C. Ballantyne, V. Bittner, M. H. Criqui, H. N. Ginsberg et al., “Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association,” Circulation, vol. 123, no. 20, pp. 2292–2333, 2011. View at Google Scholar
  44. M. Masia, E. Bernal, S. Padilla, M. L. Graells, I. Jarrin, M. V. Almenar et al., “The role of C-reactive protein as a marker for cardiovascular risk associated with antiretroviral therapy in HIV-infected patients,” Atherosclerosis, vol. 195, no. 1, pp. 167–171, 2007. View at Google Scholar
  45. N. Friis-Moller, C. A. Sabin, R. Weber, A. d'Arminio Monforte, W. M. El-Sadr, P. Reiss et al., “Combination antiretroviral therapy and the risk of myocardial infarction,” The New England Journal of Medicine, vol. 349, no. 21, pp. 1993–2003, 2003. View at Google Scholar
  46. M. May, J. A. C. Sterne, M. Shipley et al., “A coronary heart disease risk model for predicting the effect of potent antiretroviral therapy in HIV-1 infected men,” International Journal of Epidemiology, vol. 36, no. 6, pp. 1309–1318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. R. Feinstein and D. V. Cicchetti, “High agreement but low kappa: I. The problems of two paradoxes,” Journal of Clinical Epidemiology, vol. 43, no. 6, pp. 543–549, 1990. View at Google Scholar