Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 973150, 18 pages
http://dx.doi.org/10.1155/2013/973150
Review Article

Molecular Imaging of Experimental Abdominal Aortic Aneurysms

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA

Received 1 February 2013; Accepted 19 March 2013

Academic Editors: A. Ciarmiello, B. A. Kaufmann, and A. Takano

Copyright © 2013 Aneesh K. Ramaswamy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Belsley and M. D. Tilson, “Two decades of research on etiology and genetic factors in the abdominal aortic aneurysm (AAA)—with a glimpse into the 21st century,” Acta Chirurgica Belgica, vol. 103, no. 2, pp. 187–196, 2003. View at Google Scholar · View at Scopus
  2. W. F. Johnston, M. Salmon, G. Su et al., “Genetic and pharmacologic disruption of interleukin-1β signaling inhibits experimental aortic aneurysm formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 2, pp. 294–304, 2013. View at Publisher · View at Google Scholar
  3. F. A. Lederle, G. R. Johnson, S. E. Wilson et al., “Prevalence and associations of abdominal aortic aneurysm detected through screening,” Annals of Internal Medicine, vol. 126, no. 6, pp. 441–449, 1997. View at Google Scholar · View at Scopus
  4. R. S. von Allmen and J. T. Powell, “The management of ruptured abdominal aortic aneurysms: screening for abdominal aortic aneurysm and incidence of rupture,” The Journal of Cardiovascular Surgery, vol. 53, no. 1, pp. 69–76, 2012. View at Google Scholar
  5. S. Nanda, S. G. Sharma, and S. Longo, “Molecular targets and abdominal aortic aneurysms,” Recent Patents on Cardiovascular Drug Discovery, vol. 4, no. 2, pp. 150–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Powell and R. M. Greenhalgh, “Small abdominal aortic aneurysms,” The New England Journal of Medicine, vol. 348, no. 19, pp. 1895–1901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. K. C. Kent, R. M. Zwolak, N. N. Egorova et al., “Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals,” Journal of Vascular Surgery, vol. 52, no. 3, pp. 539–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Prinssen, E. L. G. Verhoeven, J. Buth et al., “A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms,” The New England Journal of Medicine, vol. 351, no. 16, pp. 1607–1618, 2004. View at Publisher · View at Google Scholar
  9. A. Daugherty and L. A. Cassis, “Mouse models of abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 429–434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Hong, Y. Yang, B. Liu, and W. Cai, “Imaging of abdominal aortic aneurysm: the present and the future,” Current Vascular Pharmacology, vol. 8, no. 6, pp. 808–819, 2010. View at Google Scholar · View at Scopus
  11. A. Trollope, J. V. Moxon, C. S. Moran, and J. Golledge, “Animal models of abdominal aortic aneurysm and their role in furthering management of human disease,” Cardiovascular Pathology, vol. 20, no. 2, pp. 114–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Lu, D. L. Rateri, D. Bruemmer, L. A. Cassis, and A. Daugherty, “Novel mechanisms of abdominal aortic aneurysms,” Current Atherosclerosis Reports, vol. 14, no. 5, pp. 402–412, 2012. View at Google Scholar
  13. R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR Journal, vol. 42, no. 3, pp. 248–262, 2001. View at Google Scholar · View at Scopus
  14. R. Lecomte, J. Cadorette, P. Richard, S. Rodrigue, and D. Rouleau, “Design and engineering aspects of a high resolution positron tomograph for small animal imaging,” IEEE Transactions on Nuclear Science, vol. 41, no. 4, pp. 1446–1452, 1994. View at Google Scholar · View at Scopus
  15. R. W. Busuttil, H. Rinderbriecht, A. Flesher, and C. Carmack, “Elastase activity: the role of elastase in aortic aneurysm formation,” Journal of Surgical Research, vol. 32, no. 3, pp. 214–217, 1982. View at Google Scholar · View at Scopus
  16. E. J. Andrews, W. J. White, and L. P. Bullock, “Spontaneous aortic aneurysms in Blotchy mice,” American Journal of Pathology, vol. 78, no. 2, pp. 199–210, 1975. View at Google Scholar · View at Scopus
  17. S. Anidjar, J. L. Salzmann, D. Gentric, P. Lagneau, J. P. Camilleri, and J. B. Michel, “Elastase-induced experimental aneurysms in rats,” Circulation, vol. 82, no. 3, pp. 973–981, 1990. View at Google Scholar · View at Scopus
  18. R. Pyo, J. K. Lee, J. M. Shipley et al., “Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1641–1649, 2000. View at Google Scholar · View at Scopus
  19. A. K. Sharma, G. Lu, A. Jester et al., “Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment,” Circulation, vol. 126, no. 11, supplement 1, pp. S38–S45, 2012, Erratum in Circulation, vol. 126, no. 17, p. e278, 2012. View at Google Scholar
  20. G. Ailawadi, J. L. Eliason, K. J. Roelofs et al., “Gender differences in experimental aortic aneurysm formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 11, pp. 2116–2122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. M. Bhamidipati, G. S. Mehta, G. Lu et al., “Development of a novel murine model of aortic aneurysms using peri-adventitial elastase,” Surgery, vol. 152, no. 2, 2012. View at Google Scholar
  22. A. C. Chiou, B. Chiu, and W. H. Pearce, “Murine aortic aneurysm produced by periarterial application of calcium chloride,” Journal of Surgical Research, vol. 99, no. 2, pp. 371–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. G. M. Longo, W. Xiong, T. C. Greiner, Y. Zhao, N. Fiotti, and B. T. Baxter, “Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 625–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Daugherty, M. W. Manning, and L. A. Cassis, “Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1605–1612, 2000. View at Google Scholar · View at Scopus
  25. P. Ravisankar, L. A. Cassis, S. Szilvassy, and A. Daugherty, “Absence of CCR2 receptors in bone marrow-derived cells decreases angiotensin II induced atherosclerosis and abdominal aortic aneurysms in ApoE deficient mice,” Arteriosclerosis Thrombosis and Vascular Biology, vol. 22, no. 5, 2002. View at Google Scholar
  26. M. W. Manning, L. A. Cassis, and A. Daugherty, “Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 483–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Xie, H. Lu, J. J. Moorleghen et al., “Doxycycline does not influence established abdominal aortic aneurysms in angiotensin II-infused mice,” PLoS One, vol. 7, no. 9, Article ID e46411, 2012. View at Google Scholar
  28. L. A. Cassis, M. Gupte, S. Thayer et al., “ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice,” American Journal of Physiology, vol. 296, no. 5, pp. H1660–H1665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Saraff, F. Babamusta, L. A. Cassis, and A. Daugherty, “Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1621–1626, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Wang, H. Ait-Oufella, O. Herbin et al., “TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice,” Journal of Clinical Investigation, vol. 120, no. 2, pp. 422–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Reilly, E. B. Savage, C. M. Brophy, and M. D. Tilson, “Hydrocortisone rapidly induces aortic rupture in a genetically susceptible mouse,” Archives of Surgery, vol. 125, no. 6, pp. 707–709, 1990. View at Google Scholar · View at Scopus
  32. J. M. Mäki, J. Räsänen, H. Tikkanen et al., “Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice,” Circulation, vol. 106, no. 19, pp. 2503–2509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Lemaître, P. D. Soloway, and J. D'Armiento, “Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1,” Circulation, vol. 107, no. 2, pp. 333–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. T. Baxter, W. H. Pearce, E. A. Waltke et al., “Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study,” Journal of Vascular Surgery, vol. 36, no. 1, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Xiong, R. Knispel, J. MacTaggart, T. C. Greiner, S. J. Weiss, and B. T. Baxter, “Membrane-type 1 matrix metalloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo,” Journal of Biological Chemistry, vol. 284, no. 3, pp. 1765–1771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Xiong, J. MacTaggart, R. Knispel, J. Worth, Y. Persidsky, and B. T. Baxter, “Blocking TNF-α attenuates aneurysm formation in a murine model,” Journal of Immunology, vol. 183, no. 4, pp. 2741–2746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Sun, G. K. Sukhova, M. Yang et al., “Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3359–3368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. O. Liu, L. Jia, X. Liu et al., “Clopidogrel, a platelet P2Y12 receptor inhibitor, reduces vascular inflammation and angiotensin II induced-abdominal aortic aneurysm progression,” PloS One, vol. 7, no. 12, Article ID e51707, 2012. View at Google Scholar
  39. F. Roshanali, M. H. Mandegar, M. A. Yousefnia, A. Mohammadi, and B. Baharvand, “Abdominal aorta screening during transthoracic echocardiography,” Echocardiography, vol. 24, no. 7, pp. 685–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. H. Wink, H. Wijkstra, J. J. M. C. H. de La Rosette, and C. A. Grimbergen, “Ultrasound imaging and contrast agents: a safe alternative to MRI?” Minimally Invasive Therapy and Allied Technologies, vol. 15, no. 2, pp. 93–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. B. M. Wilmink, C. S. F. F. Hubbard, and C. R. G. Quick, “Quality of the measurement of the infrarenal aortic diameter by ultrasound,” Journal of Medical Screening, vol. 4, no. 1, pp. 49–53, 1997. View at Google Scholar · View at Scopus
  42. J. S. Lindholt, S. Vammen, S. Juul, E. W. Henneberg, and H. Fasting, “The validity of ultrasonographic scanning as screening method for abdominal aortic aneurysm,” European Journal of Vascular and Endovascular Surgery, vol. 17, no. 6, pp. 472–475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Klink, F. Hyafil, J. Rudd et al., “Diagnostic and therapeutic strategies for small abdominal aortic aneurysms,” Nature Reviews. Cardiology, vol. 8, no. 6, pp. 338–347, 2011. View at Publisher · View at Google Scholar
  44. Y. X. Wang, B. Martin-McNulty, A. D. Freay et al., “Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice,” American Journal of Pathology, vol. 159, no. 4, pp. 1455–1464, 2001. View at Google Scholar · View at Scopus
  45. B. Martin-Mcnulty, J. Vincelette, R. Vergona, M. E. Sullivan, and Y. X. Wang, “Noninvasive measurement of abdominal aortic aneurysms in intact mice by a high-frequency ultrasound imaging system,” Ultrasound in Medicine and Biology, vol. 31, no. 6, pp. 745–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Azuma, L. Maegdefessel, T. Kitagawa, R. L. Dalman, M. V. McConnell, and P. S. Tsao, “Assessment of elastase-induced murine abdominal aortic aneurysms: comparison of ultrasound imaging with in situ video microscopy,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 252141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. S. Foster, M. Y. Zhang, Y. Q. Zhou et al., “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound in Medicine and Biology, vol. 28, no. 9, pp. 1165–1172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. M. Tedesco, M. Terashima, F. G. Blankenberg et al., “Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 10, pp. 1452–1457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Spin, M. Hsu, J. Azuma et al., “Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm,” Physiological Genomics, vol. 43, no. 17, pp. 993–1003, 2011. View at Google Scholar
  50. C. Barisione, R. Charnigo, D. A. Howatt, J. J. Moorleghen, D. L. Rateri, and A. Daugherty, “Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high-frequency ultrasonography,” Journal of Vascular Surgery, vol. 44, no. 2, pp. 372–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Favreau, B. T. Nguyen, I. Gao et al., “Murine ultrasound imaging for circumferential strain analyses in the angiotensin II abdominal aortic aneurysm model,” Journal of Vascular Surgery, vol. 56, no. 2, pp. 462–469, 2012. View at Google Scholar
  52. D. F. Leotta, M. Paun, K. W. Beach, T. R. Kohler, R. E. Zierler, and D. E. Strandness Jr., “Measurement of abdominal aortic aneurysms with three-dimensional ultrasound imaging: preliminary report,” Journal of Vascular Surgery, vol. 33, no. 4, pp. 700–707, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Goldberg, P. Pakkiri, E. Dai, A. Lucas, and A. Fenster, “Measurements of aneurysm morphology determined by 3-D micro-ultrasound imaging as potential quantitative biomarkers in a mouse aneurysm model,” Ultrasound in Medicine and Biology, vol. 33, no. 10, pp. 1552–1560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. C. J. Goergen, B. L. Johnson, J. M. Greve, C. A. Taylor, and C. K. Zarins, “Increased anterior abdominal aortic wall motion: possible role in aneurysm pathogenesis and design of endovascular devices,” Journal of Endovascular Therapy, vol. 14, no. 4, pp. 574–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Brekken, S. Muller, S. U. Gjerald, and T. A. Hernes, “Simulation model for assessing quality of ultrasound strain estimation in abdominal aortic aneurysm,” Ultrasound in Medicine & Biology, vol. 38, no. 5, pp. 889–896, 2012. View at Google Scholar
  56. A. L. Goertzen, A. K. Meadors, R. W. Silverman, and S. R. Cherry, “Simultaneous molecular and anatomical imaging of the mouse in vivo,” Physics in Medicine and Biology, vol. 47, no. 24, pp. 4315–4328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Long, L. Rouet, A. Bissery, P. Rossignol, D. Mouradian, and M. Sapoval, “Compliance of abdominal aortic aneurysms: evaluation of tissue doppler imaging,” Ultrasound in Medicine and Biology, vol. 30, no. 9, pp. 1099–1108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Long, L. Rouet, A. Bissery, P. Rossignol, D. Mouradian, and M. Sapoval, “Compliance of abdominal aortic aneurysms evaluated by tissue doppler imaging: correlation with aneurysm size,” Journal of Vascular Surgery, vol. 42, no. 1, pp. 18–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Fromageau, S. Lerouge, R. L. Maurice, G. Soulez, and G. Cloutier, “Noninvasive vascular ultrasound elastography applied to the characterization of experimental aneurysms and follow-up after endovascular repair,” Physics in Medicine and Biology, vol. 53, no. 22, pp. 6475–6490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Iezzi, R. Basilico, D. Giancristofaro, D. Pascali, A. R. Cotroneo, and M. L. Storto, “Contrast-enhanced ultrasound versus color duplex ultrasound imaging in the follow-up of patients after endovascular abdominal aortic aneurysm repair,” Journal of Vascular Surgery, vol. 49, no. 3, pp. 552–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Napoli, I. Bargellini, S. G. Sardella et al., “Abdominal aortic aneurysm: contrast-enhanced US for missed endoleaks after endoluminal repair,” Radiology, vol. 233, no. 1, pp. 217–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Fujikura, J. Luo, V. Gamarnik et al., “A novel noninvasive technique for pulse-wave imaging and characterization of clinically-significant vascular mechanical properties in vivo,” Ultrasonic Imaging, vol. 29, no. 3, pp. 137–154, 2007. View at Google Scholar · View at Scopus
  63. J. Luo, K. Fujikura, L. S. Tyrie, M. D. Tilson, and E. E. Konofagou, “Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo,” IEEE Transactions on Medical Imaging, vol. 28, no. 4, pp. 477–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. C. J. Goergen, K. N. Barr, D. T. Huynh et al., “In vivo quantification of murine aortic cyclic strain, motion, and curvature: implications for abdominal aortic aneurysm growth,” Journal of Magnetic Resonance Imaging, vol. 32, no. 4, pp. 847–858, 2010. View at Google Scholar · View at Scopus
  65. R. Nyman and M. O. Eriksson, “The future of imaging in the management of abdominal aortic aneurysm,” Scandinavian Journal of Surgery, vol. 97, no. 2, pp. 110–115, 2008. View at Google Scholar · View at Scopus
  66. A. d'Audiffret, P. Desgranges, D. H. Kobeiter, and J. P. Becquemin, “Follow-up evaluation of endoluminally treated abdominal aortic aneurysms with duplex ultrasonography: validation with computed tomography,” Journal of Vascular Surgery, vol. 33, no. 1, pp. 42–50, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. K. J. Mortele, J. McTavish, and P. R. Ros, “Current techniques of computed tomography: helical CT, multidetector CT, and 3D reconstruction,” Clinics in Liver Disease, vol. 6, no. 1, pp. 29–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. L. R. Sprouse, G. H. Meier, F. N. Parent et al., “Is three-dimensional computed tomography reconstruction justified before endovascular aortic aneurysm repair?” Journal of Vascular Surgery, vol. 40, no. 3, pp. 443–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. M. Lawrence-Brown, Z. Sun, J. B. Semmens, K. Liffman, I. D. Sutalo, and D. B. Hartley, “Type II endoleaks: when is intervention indicated and what is the index of suspicion for types I or III?” Journal of Endovascular Therapy, vol. 16, supplement 1, pp. I106–I118, 2009. View at Google Scholar · View at Scopus
  70. B. Vandeghinste, B. Trachet, M. Renard et al., “Replacing vascular corrosion casting by in vivo micro-ct imaging for building 3D cardiovascular models in mice,” Molecular Imaging and Biology, vol. 13, no. 1, pp. 78–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Trachet, M. Renard, G. de Santis et al., “An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice,” Annals of Biomedical Engineering, vol. 39, no. 9, pp. 2430–2444, 2011. View at Google Scholar
  72. B. Trachet, J. Bols, G. de Santis, S. Vandenberghe, B. Loeys, and P. Segers, “The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data,” Journal of Biomechanical Engineering, vol. 133, no. 12, Article ID 121006, 2011. View at Google Scholar
  73. M. A. Bartoli, F. Kober, R. Cozzone, R. W. Thompson, M. C. Alessi, and M. Bernard, “In vivo assessment of murine elastase-induced abdominal aortic aneurysm with high resolution magnetic resonance imaging,” European Journal of Vascular and Endovascular Surgery, vol. 44, no. 5, pp. 475–481, 2012. View at Google Scholar
  74. Z. Li and C. Kleinstreuer, “Blood flow and structure interactions in a stented abdominal aortic aneurysm model,” Medical Engineering and Physics, vol. 27, no. 5, pp. 369–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. G. H. Turner, A. R. Olzinski, R. E. Bernard et al., “In vivo serial assessment of aortic aneurysm formation in apolipoprotein E-deficient mice via MRI,” Circulation: Cardiovascular Imaging, vol. 1, no. 3, pp. 220–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Yao, Y. Wang, Y. Zhang et al., “In vivo imaging of macrophages during the early-stages of abdominal aortic aneurysm using high resolution MRI in ApoE mice,” PloS One, vol. 7, no. 3, Article ID e33523, 2012. View at Publisher · View at Google Scholar
  77. C. J. Goergen, J. Azuma, K. N. Barr et al., “Influences of aortic motion and curvature on vessel expansion in murine experimental aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 2, pp. 270–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Choke, G. W. Cockerill, J. Dawson et al., “Vascular endothelial growth factor enhances angiotensin II-induced aneurysm formation in apolipoprotein E-deficient mice,” Journal of Vascular Surgery, vol. 52, no. 1, pp. 159–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Klink, J. Heynens, B. Herranz et al., “In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 58, no. 24, pp. 2522–2530, 2011. View at Google Scholar
  80. S. Amirbekian, R. C. Long, M. A. Consolini et al., “In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization,” American Journal of Physiology, vol. 297, no. 4, pp. H1290–H1295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. N. Ludman, S. W. Yusuf, S. C. Whitaker, R. H. Gregson, S. Walker, and B. R. Hopkinson, “Feasibility of using dynamic contrast-enhanced magnetic resonance angiography as the sole imaging modality prior to endovascular repair of abdominal aortic aneurysms,” European Journal of Vascular and Endovascular Surgery, vol. 19, no. 5, pp. 524–530, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. J. A. van Herwaarden, B. E. Muhs, K. L. Vincken et al., “Aortic compliance following EVAR and the influence of different endografts: determination using dynamic MRA,” Journal of Endovascular Therapy, vol. 13, no. 3, pp. 406–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Frydrychowicz, R. Arnold, D. Hirtler et al., “Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation,” Journal of Cardiovascular Magnetic Resonance, vol. 10, no. 1, article 30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Weissleder, “Molecular imaging in cancer,” Science, vol. 312, no. 5777, pp. 1168–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. C. M. Kramer, L. A. Cerilli, K. Hagspiel, J. M. DiMaria, F. H. Epstein, and J. A. Kern, “Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm,” Circulation, vol. 109, no. 8, pp. 1016–1021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. D. E. Sosnovik and R. Weissleder, “Emerging concepts in molecular MRI,” Current Opinion in Biotechnology, vol. 18, no. 1, pp. 4–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. G. H. Turner, A. R. Olzinski, R. E. Bernard et al., “Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm,” Journal of Magnetic Resonance Imaging, vol. 30, no. 2, pp. 455–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Weissleder, K. Kelly, E. Y. Sun, T. Shtatland, and L. Josephson, “Cell-specific targeting of nanoparticles by multivalent attachment of small molecules,” Nature Biotechnology, vol. 23, no. 11, pp. 1418–1423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Josephson, J. Lewis, P. Jacobs, P. F. Hahn, and D. D. Stark, “The effects of iron oxides on proton relaxivity,” Magnetic Resonance Imaging, vol. 6, no. 6, pp. 647–653, 1988. View at Google Scholar · View at Scopus
  90. T. Kitagawa, H. Kosuge, M. Uchida et al., “RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease,” Molecular Imaging and Biology, vol. 14, no. 3, pp. 315–324, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. J. M. J. Richards, S. I. Semple, T. J. MacGillivray et al., “Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study,” Circulation: Cardiovascular Imaging, vol. 4, no. 3, pp. 274–281, 2011. View at Google Scholar
  92. E. Lancelot, V. Amirbekian, I. Brigger et al., “Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 3, pp. 425–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. H. J. Weinmann, R. C. Brasch, W. R. Press, and G. E. Wesbey, “Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent,” American Journal of Roentgenology, vol. 142, no. 3, pp. 619–624, 1984. View at Google Scholar · View at Scopus
  94. V. Amirbekian, J. G. S. Aguinaldo, S. Amirbekian et al., “Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo,” Radiology, vol. 251, no. 2, pp. 429–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Bazeli, M. Coutard, B. D. Duport et al., “In vivo evaluation of a new magnetic resonance imaging contrast agent (P947) to target matrix metalloproteinases in expanding experimental abdominal aortic aneurysms,” Investigative Radiology, vol. 45, no. 10, pp. 662–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. J. F. Deux, J. Dai, C. Rivière et al., “Aortic aneurysms in a rat model: in vivo MR imaging of endovascular cell therapy,” Radiology, vol. 246, no. 1, pp. 185–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Miyama, M. M. Dua, G. M. Schultz et al., “Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms,” Molecular Imaging, vol. 11, no. 2, pp. 126–134, 2012. View at Google Scholar
  98. K. Licha, B. Riefke, B. Ebert, and C. Grötzinger, “Cyanine dyes as contrast agents in biomedical optical imaging,” Academic Radiology, vol. 9, supplement 2, pp. S320–S322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. B. J. Tromberg, N. Shah, R. Lanning et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia, vol. 2, no. 1-2, pp. 26–40, 2000. View at Google Scholar
  100. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using neer-infrared optical measurements and fluorescent contrast agents,” Neoplasia, vol. 2, no. 5, pp. 388–417, 2000. View at Google Scholar · View at Scopus
  101. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Current Opinion in Chemical Biology, vol. 7, no. 5, pp. 626–634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. J. C. Wu, I. Y. Chen, G. Sundaresan et al., “Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography,” Circulation, vol. 108, no. 11, pp. 1302–1305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annual Review of Biomedical Engineering, vol. 4, no. 1, pp. 235–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Uhrbom, E. Nerio, and E. C. Holland, “Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model,” Nature Medicine, vol. 10, no. 11, pp. 1257–1260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nature Reviews Cancer, vol. 2, no. 1, pp. 11–18, 2002. View at Google Scholar · View at Scopus
  106. A. Sato, B. Klaunberg, and R. Tolwani, “In vivo bioluminescence imaging,” Comparative Medicine, vol. 54, no. 6, pp. 631–634, 2004. View at Google Scholar · View at Scopus
  107. A. J. Mueller, D. U. Bartsch, R. Folberg et al., “Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy,” Archives of Ophthalmology, vol. 116, no. 1, pp. 31–39, 1998. View at Google Scholar · View at Scopus
  108. A. Poellinger, S. Burock, D. Grosenick et al., “Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study,” Radiology, vol. 258, no. 2, pp. 409–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Tajima, K. Yamazaki, Y. Masuda et al., “Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer,” Annals of Surgery, vol. 249, no. 1, pp. 58–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer,” Breast Cancer, vol. 12, no. 3, pp. 211–215, 2005. View at Google Scholar · View at Scopus
  111. C. Vinegoni, I. Botnaru, E. Aikawa et al., “Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques,” Science Translational Medicine, vol. 3, no. 84, Article ID 84ra45, 2011. View at Google Scholar
  112. J. Oda, Y. Kato, S. F. Chen et al., “Intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and graphic analysis of fluorescence intensity in cerebral aneurysm surgery,” Journal of Clinical Neuroscience, vol. 18, no. 8, pp. 1097–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Esposito, A. Durand, T. van Doormaal, and L. Regli, “Selective-targeted extra-intracranial bypass surgery in complex middle cerebral artery aneurysms: correctly identifying the recipient artery using indocyanine green videoangiography,” Neurosurgery, vol. 71, no. 2, supplement, pp. 274–284, 2012. View at Publisher · View at Google Scholar
  114. R. A. Sheth, M. Maricevich, and U. Mahmood, “In vivo optical molecular imaging of matrix metalloproteinase activity in abdominal aortic aneurysms correlates with treatment effects on growth rate,” Atherosclerosis, vol. 212, no. 1, pp. 181–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. E. L. Kaijzel, P. M. van Heijningen, P. A. Wielopolski et al., “Multimodality imaging reveals a gradual increase in matrix metalloproteinase activity at aneurysmal lesions in live fibulin-4 mice,” Circulation: Cardiovascular Imaging, vol. 3, no. 5, pp. 567–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” Journal of Biomedical Optics, vol. 6, no. 4, pp. 432–440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. M. T. Madsen, “Recent advances in SPECT imaging,” Journal of Nuclear Medicine, vol. 48, no. 4, pp. 661–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Rahmim and H. Zaidi, “PET versus SPECT: strengths, limitations and challenges,” Nuclear Medicine Communications, vol. 29, no. 3, pp. 193–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. S. B. Cherry, “Fundamentals of positron emission tomography and applications in preclinical drug development,” Journal of Clinical Pharmacology, vol. 41, no. 5, pp. 482–491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. U. Y. Ryo and S. M. Pinsky, “Radionuclide angiography with 99m technetium-RBCs,” CRC Critical Reviews in Clinical Radiology and Nuclear Medicine, vol. 8, no. 1, pp. 107–128, 1976. View at Google Scholar · View at Scopus
  121. F. Rouzet, L. Bachelet-Violette, J. M. Alsac et al., “Radiolabeled fucoidan as a P-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation,” Journal of Nuclear Medicine, vol. 52, no. 9, pp. 1433–1440, 2011. View at Google Scholar
  122. L. Sarda-Mantel, M. Coutard, F. Rouzet et al., “99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2153–2159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Iwasaki, T. Iwasaki, Y. Aihara et al., “Immunoscintigraphy of aortic dissection with 99mTc-labeled murine anti-smooth muscle myosin monoclonal antiboby in rats,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 130–137, 2001. View at Google Scholar · View at Scopus
  124. S. Vemulapalli, S. D. Metzler, G. Akabani et al., “Cell therapy in murine atherosclerosis: in vivo imaging with high-resolution helical SPECT,” Radiology, vol. 242, no. 1, pp. 198–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. D. Heyns, M. G. Lötter, P. N. Badenhorst, O. van Reenen, H. Pieters, and P. C. Minnaar, “Kinetics and fate of (111)Indium-oxine labelled blood platelets in asplenic subjects,” Thrombosis and Haemostasis, vol. 44, no. 2, pp. 100–104, 1980. View at Google Scholar · View at Scopus
  126. Y. Murata, I. Yamada, I. Umehara, and H. Shibuya, “Tl-201 myocardial SPECT in patients with systemic arterial diseases,” Clinical Nuclear Medicine, vol. 23, no. 12, pp. 832–835, 1998. View at Publisher · View at Google Scholar · View at Scopus
  127. D. S. Berman, H. Kiat, K. van Train, J. D. Friedman, F. P. Wang, and G. Germano, “Dual-isotope myocardial perfusion spect with rest thallium-201 and stress Tc-99m sestamibi,” Cardiology Clinics, vol. 12, no. 2, pp. 261–270, 1994. View at Google Scholar · View at Scopus
  128. A. K. Buck, S. Nekolla, S. Ziegler et al., “SPECT/CT,” Journal of Nuclear Medicine, vol. 49, no. 8, pp. 1305–1319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. H. Iida and S. Eberl, “Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT,” Journal of Nuclear Cardiology, vol. 5, no. 3, pp. 313–331, 1998. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Kobayashi, T. Mogami, M. Uchiyama et al., “Usefulness of 99mTc-MIBI SPECT in the metastatic lesions of thyroid cancer,” Nihon Igaku Hōshasen Gakkai Zasshi, vol. 57, no. 3, pp. 127–132, 1997. View at Google Scholar · View at Scopus
  131. I. Shibata, “Development of three-dimensional brain SPECT imaging: the future of functional imaging,” Journal of the Medical Society of Toho University, vol. 50, no. 2, pp. 124–127, 2003. View at Google Scholar · View at Scopus
  132. L. E. Holder, J. L. Machin, P. L. Asdourian, J. M. Links, and C. C. Sexton, “Planar and high-resolution SPECT bone imaging in the diagnosis of facet syndrome,” Journal of Nuclear Medicine, vol. 36, no. 1, pp. 37–44, 1995. View at Google Scholar · View at Scopus
  133. I. A. Illán, J. M. Górriz, J. Ramírez et al., “Projecting independent components of SPECT images for computer aided diagnosis of Alzheimer's disease,” Pattern Recognition Letters, vol. 31, no. 11, pp. 1342–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. L. Sarda-Mantel, J. M. Alsac, R. Boisgard et al., “Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms,” Journal of Vascular Surgery, vol. 56, no. 3, pp. 765–773, 2012. View at Google Scholar
  135. B. L. Franc, P. D. Acton, C. Mari, and B. H. Hasegaway, “Small-animal SPECT and SPECT/CT: important tools for preclinical investigation,” Journal of Nuclear Medicine, vol. 49, no. 10, pp. 1651–1663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. T. C. Kwee, S. Basu, and A. Alavi, “PET and PET/CT for unknown primary tumors,” in Positron Emission Tomography, M. E. Juweid and O. S. Hoekstra, Eds., pp. 317–333, Humana Press Inc, Totowa, NJ, USA, 2011. View at Google Scholar
  137. M. Nahrendorf, E. Keliher, B. Marinelli et al., “Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 4, pp. 750–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. D. Palombo, S. Morbelli, G. Spinella et al., “A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view,” Annals of Vascular Surgery, vol. 26, no. 4, pp. 491–499, 2012. View at Google Scholar
  139. M. D. Wilkinson, E. Szeto, M. J. Fulham, C. J. Constable, and B. C. McCaughan, “FDG positron emission tomographic imaging of a large abdominal aortic aneurysm,” Clinical Nuclear Medicine, vol. 28, no. 2, pp. 130–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Sakalihasan, H. van Damme, P. Gomez et al., “Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA),” European Journal of Vascular and Endovascular Surgery, vol. 23, no. 5, pp. 431–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Truijers, J. A. Pol, H. Kurvers, S. Bredie, W. J. Oyen, and J. D. Blankensteijn, “Incidental finding of malignancy in patients preoperatively evaluated for aneurysm wall pathology using PET/CT,” Journal of Vascular Surgery, vol. 49, no. 5, pp. 1313–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. K. Serdons, A. Verbruggen, and G. M. Bormans, “Developing new molecular imaging probes for PET,” Methods, vol. 48, no. 2, pp. 104–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. O. Mawlawi and D. W. Townsend, “Multimodality imaging: an update on PET/CT technology,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, supplement 1, pp. 15–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science, vol. 335, no. 6075, pp. 1458–1462, 2012. View at Google Scholar
  145. L. V. Wang, Photoacoustic Imaging and Spectroscopy, CRC Press, New York, NY, USA, 2009.
  146. H. W. Wang, N. Chai, P. Wang et al., “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Physical Review Letters, vol. 106, no. 23, Article ID 238106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” Journal of Biophotonics, vol. 5, no. 1, pp. 25–32, 2012. View at Google Scholar
  148. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Optics Letters, vol. 36, no. 5, pp. 597–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. B. Wang, A. Karpiouk, D. Yeager et al., “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Optics Letters, vol. 37, no. 7, pp. 1244–1246, 2012. View at Publisher · View at Google Scholar
  150. Y. Komachi, H. Sato, and H. Tashiro, “Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease,” Applied Optics, vol. 45, no. 30, pp. 7938–7943, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Review of Molecular Diagnostics, vol. 6, no. 2, pp. 231–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 8943–8948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. G. Hong, J. C. Lee, J. T. Robinson et al., “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nature Medicine, vol. 18, no. 12, pp. 1841–1846, 2012. View at Publisher · View at Google Scholar
  155. M. A. Calfon, C. Vinegoni, V. Ntziachristos, and F. A. Jaffer, “Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques,” Journal of Biomedical Optics, vol. 15, no. 1, Article ID 011107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. F. A. Jaffer, M. A. Calfon, A. Rosenthal et al., “Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury,” Journal of the American College of Cardiology, vol. 57, no. 25, pp. 2516–2526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Yoo, J. W. Kim, M. Shishkov et al., “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nature Medicine, vol. 17, no. 12, pp. 1680–1684, 2011. View at Google Scholar
  158. F. A. Jaffer, C. Vinegoni, M. C. John et al., “Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis,” Circulation, vol. 118, no. 18, pp. 1802–1809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. C. M. Gardner, H. Tan, E. L. Hull et al., “Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system,” JACC: Cardiovascular Imaging, vol. 1, no. 5, pp. 638–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Brugaletta, H. M. Garcia-Garcia, P. W. Serruys et al., “NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography,” JACC: Cardiovascular Imaging, vol. 4, no. 6, pp. 647–655, 2011. View at Publisher · View at Google Scholar
  161. G. J. Tearney, M. E. Brezinski, B. E. Bouma et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science, vol. 276, no. 5321, pp. 2037–2039, 1997. View at Publisher · View at Google Scholar · View at Scopus