Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 980480, 8 pages
http://dx.doi.org/10.1155/2013/980480
Research Article

The Mitigating Effect of Citrullus colocynthis (L.) Fruit Extract against Genotoxicity Induced by Cyclophosphamide in Mice Bone Marrow Cells

1Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 18 Kilometer of Farah Abad Road, Sari, Iran
2Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
3Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
4Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48175-861, Iran

Received 11 August 2013; Accepted 24 September 2013

Academic Editors: S. Satar and D. N. Tripathi

Copyright © 2013 Mohammad Shokrzadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Dollery, Therapeutic Drugs, Churchill Livingstone, Edinburgh, UK, 1999.
  2. E. M. Hersh and E. Freireich, “Host defense mechanisms and their modification by cancer chemotherapy,” in Methods in Cancer Research, H. Busch, Ed., pp. 355–451, Academic Press, New York, NY, USA, 1968. View at Google Scholar
  3. R. M. Bukowski, “The need for cytoprotection,” European Journal of Cancer A, vol. 32, no. 4, pp. S2–S4, 1996. View at Google Scholar · View at Scopus
  4. L. H. Fraiser, S. Kanekal, and J. P. Kehrer, “Cyclophosphamide toxicity: characterising and avoiding the problem,” Drugs, vol. 42, no. 5, pp. 781–795, 1991. View at Google Scholar · View at Scopus
  5. G. R. Mohn and J. Ellenberger, “Genetic effects of cyclophosphamide, ifosfamide and trofosfamide,” Mutation Research, vol. 32, no. 3-4, pp. 331–360, 1976. View at Google Scholar · View at Scopus
  6. E. L. Schneider, H. Sternberg, and R. R. Tice, “In vivo analysis of cellular replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 5, pp. 2041–2044, 1977. View at Google Scholar · View at Scopus
  7. F. R. Moore, G. A. Urda, G. Krishna, and J. C. Theiss, “An in vivo/in vitro method for assessing micronucleus and chromosome aberration induction in rat bone marrow and spleen. 1. Studies with cyclophosphamide,” Mutation Research, vol. 335, no. 2, pp. 191–199, 1995. View at Google Scholar · View at Scopus
  8. P. Chakraborty, U. H. Sk, N. Jayanta, K. Das, S. Pal, and S. Bhattacharya, “Modulation of cyclophosphamide-induced cellular toxicity by diphenylmethyl selenocyanate in vivo, an enzymatic study,” Journal of Cancer Molecules, vol. 4, no. 6, pp. 183–189, 2009. View at Google Scholar · View at Scopus
  9. P. Pratheeshkumar and G. Kuttan, “Ameliorative action of Vernonia cinerea L. on cyclophosphamide-induced immunosuppression and oxidative stress in mice,” Inflammopharmacology, vol. 18, no. 4, pp. 197–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ahmadi, S. J. Hosseinimehr, F. Naghshvar, E. Hajir, and M. Ghahremani, “Chemoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells,” Archives of Pharmacal Research, vol. 31, no. 6, pp. 794–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Hosseinimehr, S. Ahmadashrafi, F. Naghshvar, A. Ahmadi, S. Ehasnalavi, and M. Tanha, “Chemoprotective effects of zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells,” Integrative Cancer Therapies, vol. 9, no. 2, pp. 219–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Sanadgol, S. Najafi, L. V. Ghasemi, G. Motalleb, and A. Afsharimoghadam, “A study of the inhibitory effects of Citrullus colocynthis (CCT) using hydro-alcoholic extract on the expression of cytokines: TNF-α and IL-6 in high fat diet-fed mice towards a cure for diabetes mellitus,” Journal of Pharmacognosy and Phytotherapy, vol. 3, no. 6, pp. 81–88, 2011. View at Google Scholar · View at Scopus
  13. I. A. Abdel-Hassan, J. A. Abdel-Barry, and S. T. Mohammeda, “The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 325–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Gebhardt, “Antioxidative, antiproliferative and biochemical effects in HepG2 cells of a homeopathic remedy and its constituent plant tinctures tested separately or in combination,” Arzneimittel-Forschung, vol. 53, no. 12, pp. 823–830, 2003. View at Google Scholar · View at Scopus
  15. F. Al-Ghaithi, M. R. El-Ridi, E. Adeghate, and M. H. Amiri, “Biochemical effects of Citrullus colocynthis in normal and diabetic rats,” Molecular and Cellular Biochemistry, vol. 261, no. 1, pp. 143–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Palm, J. Cederberg, P. Hansell, P. Liss, and P. O. Carlsson, “Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension,” Diabetologia, vol. 46, no. 8, pp. 1153–1160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ahmadi, M. A. Ebrahimzadeh, S. Ahmad-Ashrafi, M. Karami, M. R. Mahdavi, and S. S. S. Saravi, “Hepatoprotective, antinociceptive and antioxidant activities of cimetidine, ranitidine and famotidine as histamine H2 receptor antagonists,” Fundamental and Clinical Pharmacology, vol. 25, no. 1, pp. 72–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Azadbakht, S. J. Hosseinimehr, M. Shokrzadeh, E. Habibi, and A. Ahmadi, “Diospyros lotus L. fruit extract protects G6PD-deficient erythrocytes from hemolytic injury in vitro and in vivo: prevention of favism disorder,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 11, pp. 1270–1281, 2011. View at Google Scholar · View at Scopus
  19. B. B. Gollapudi and L. G. McFadden, “Sample size for the estimation of polychromatic to normochromatic erythrocyte ratio in the bone marrow micronucleus test,” Mutation Research Letters, vol. 347, no. 2, pp. 97–99, 1995. View at Google Scholar · View at Scopus
  20. W. Schmid, “The micronucleus test,” Mutation Research, vol. 31, no. 1, pp. 9–15, 1975. View at Google Scholar · View at Scopus
  21. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  22. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  23. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  24. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Google Scholar · View at Scopus
  25. V. Vijayalaxmi, R. J. Reiter, T. S. Herman, and M. L. Meltz, “Melatonin and radioprotection from genetic damage: in vivo/in vitro studies with human volunteers,” Mutation Research, vol. 371, no. 3-4, pp. 221–228, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. R. R. Tice, G. L. Erexson, and M. D. Shelby, “The induction of micronucleated polychromatic erythrocytes in mice using single and multiple treatments,” Mutation Research, vol. 234, no. 3-4, pp. 187–193, 1990. View at Google Scholar · View at Scopus
  27. J. T. MacGregor, R . Schlegel, W. N. Choy, and C. M. Wehr, “Micronuclei in circulating erythrocytes: a rapid screen for chromosomal damage during routine toxicity testing in mice,” in Developments in Science and Practice of Toxicology, A. W. Hayes, R. C. Schnell, and T. S. Miya, Eds., pp. 555–558, Elsevier, Amsterdam, The Netherlands, 1983. View at Google Scholar
  28. A. K. Tiwari, “Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy,” Current Science, vol. 81, no. 9, pp. 1179–1187, 2001. View at Google Scholar · View at Scopus
  29. M. Murata, T. Suzuki, K. Midorikawa, S. Oikawa, and S. Kawanishi, “Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide,” Free Radical Biology and Medicine, vol. 37, no. 6, pp. 793–802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Chabra, M. Shokrzadeh, F. Naghshvar, F. Salehi, and A. Ahmadi, “Melatonin ameliorates oxidative stress and reproductive toxicity induced by cyclophosphamide in male mice,” Human and Experimental Toxicology, 2013. View at Publisher · View at Google Scholar
  31. U. B. Das, M. Mallick, J. M. Debnath, and D. Ghosh, “Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats,” Asian Journal of Andrology, vol. 4, no. 3, pp. 201–207, 2002. View at Google Scholar · View at Scopus
  32. D. Ghosh, U. B. Das, S. Ghosh, M. Mallick, and J. Debnath, “Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: a correlative study with testicular oxidative stress,” Drug and Chemical Toxicology, vol. 25, no. 3, pp. 281–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Arami, A. Ahmadi, and S. A. Haeri, “The radioprotective effects of Origanum vulgare extract against genotoxicity induced by 131I in human blood lymphocyte,” Cancer Biotherapy and Radiopharmaceuticals, vol. 28, no. 3, pp. 201–206, 2013. View at Publisher · View at Google Scholar
  34. D. Aune, E. de Stefani, A. Ronco et al., “Fruits, vegetables and the risk of cancer: a multisite case-control study in Uruguay,” Asian Pacific Journal of Cancer Prevention, vol. 10, no. 3, pp. 419–428, 2009. View at Google Scholar · View at Scopus
  35. A. Delazar, S. Gibbons, A. R. Kosari et al., “Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis,” Daru, vol. 14, no. 3, pp. 109–114, 2006. View at Google Scholar · View at Scopus
  36. C. Seger, S. Sturm, M. Mair, E. P. Ellmerer, and H. Stuppner, “1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae),” Magnetic Resonance in Chemistry, vol. 43, no. 6, pp. 489–491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Y. O. Chen and B. Jeffrey, Are There Age-Related Changes in Flavonoid Bioavailability? Phytochemicals Aging and Health, Taylor & Francis, New York, NY, USA, 2008.
  38. S. Kumar, D. Kumar, M. Jusha, K. Saroha, N. Singh, and B. Vashishta, “Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract,” Acta Pharmaceutica, vol. 58, no. 2, pp. 215–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. Hosseinimehr, A. Ahmadi, D. Beiki, E. Habibi, and A. Mahmoudzadeh, “Protective effects of hesperidin against genotoxicity induced by 99mTc-MIBI in human cultured lymphocyte cells,” Nuclear Medicine and Biology, vol. 36, no. 7, pp. 863–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. J. Hosseinimehr, A. Ahmadi, A. Mahmoudzadeh, and S. Mohamadifar, “Radioprotective effects of daflon against genotoxicity induced by γ irradiation in human cultured lymphocytes,” Environmental and Molecular Mutagenesis, vol. 50, no. 9, pp. 749–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. Hosseinimehr, A. Mahmoudzadeh, A. Ahmadi, S. A. Ashrafi, N. Shafaghati, and N. Hedayati, “The radioprotective effect of Zataria multiflora against genotoxicity induced by γ irradiation in human blood lymphocytes,” Cancer Biotherapy and Radiopharmaceuticals, vol. 26, no. 3, pp. 325–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Hosseinimehr, A. Mahmoudzadeh, A. Ahmadi, S. Mohamadifar, and S. Akhlaghpoor, “Radioprotective effects of hesperidin against genotoxicity induced by γ-irradiation in human lymphocytes,” Mutagenesis, vol. 24, no. 3, pp. 233–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Baumann and R. Preiss, “Cyclophosphamide and related anticancer drugs,” Journal of Chromatography B, vol. 764, no. 1-2, pp. 173–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. Fleming, “An overview of cyclophosphamide and ifosfamide pharmacology,” Pharmacotherapy, vol. 17, no. 5, pp. 146S–154S, 1997. View at Google Scholar · View at Scopus
  45. J. M. Patel, “Stimulation of cyclophosphamide-induced pulmonary microsomal lipid peroxidation by oxygen,” Toxicology, vol. 45, no. 1, pp. 79–91, 1987. View at Google Scholar · View at Scopus
  46. K. A. Jeyanthi and A. M. V. Christy, “Antioxidant effect of Citrullus colocynthis on alloxan induced diabetic rats,” International Journal of Pharmaceutical and Biological Archive, vol. 2, no. 2, 2011. View at Google Scholar
  47. S. A. Bernard and O. A. Olayinka, “Search for a novel antioxidant antiinflammatory/analgesic or anti-proliferative drug cucurbitacins hold the ace,” Journal of Medicinal Plant Research, vol. 4, no. 25, pp. 2821–2826, 2010. View at Google Scholar · View at Scopus
  48. M. Dallak and I. Bin-Jaliah, “Antioxidant activity of Citrullus colocynthis pulp extract in the RBC's of alloxan-induced diabetic rats,” Pakistan Journal of Physiology, vol. 6, pp. 112–122, 2010. View at Google Scholar
  49. R. Haque, B. Bin-Hafeez, S. Parvez et al., “Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity,” Human and Experimental Toxicology, vol. 22, no. 9, pp. 473–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Selvakumar, C. Prahalathan, Y. Mythili, and P. Varalakshmi, “Mitigation of oxidative stress in cyclophosphamide-challenged hepatic tissue by DL-α-lipoic acid,” Molecular and Cellular Biochemistry, vol. 272, no. 1-2, pp. 179–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. O. W. Griffith, “Biologic and pharmacologic regulation of mammalian glutathione synthesis,” Free Radical Biology and Medicine, vol. 27, no. 9-10, pp. 922–935, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Attia, “Influence of resveratrol on oxidative damage in genomic DNA and apoptosis induced by cisplatin,” Mutation Research, vol. 741, no. 1-2, pp. 22–31, 2012. View at Publisher · View at Google Scholar · View at Scopus