Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 981902, 8 pages
http://dx.doi.org/10.1155/2013/981902
Research Article

Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 11 July 2013; Accepted 22 August 2013

Academic Editors: H. Mobasheri and P. Pohl

Copyright © 2013 Yin How Wong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. O. Fagain, “Enzyme stabilization—recent experimental progress,” Enzyme and Microbial Technology, vol. 33, no. 2-3, pp. 137–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Arakawa, D. Ejima, Y. Kita, and K. Tsumoto, “Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs,” Biochimica et Biophysica Acta, vol. 1764, no. 11, pp. 1677–1687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. R. Singh, N. K. Poddar, T. A. Dar, S. Rahman, R. Kumar, and F. Ahmad, “Forty years of research on osmolyte-induced protein folding and stability,” Journal of the Iranian Chemical Society, vol. 8, no. 1, pp. 1–23, 2011. View at Google Scholar · View at Scopus
  4. P. N. Bryan, “Protein engineering of subtilisin,” Biochimica et Biophysical Acta, vol. 1543, no. 1, pp. 203–222, 2000. View at Google Scholar
  5. M. Matsumura, W. J. Becktel, M. Levitt, and B. W. Matthews, “Stabilization of phage T4 lysozyme by engineered disulfide bonds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 17, pp. 6562–6566, 1989. View at Google Scholar · View at Scopus
  6. B. W. Matthews, H. Nicholson, and W. J. Becktel, “Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 19, pp. 6663–6667, 1987. View at Google Scholar · View at Scopus
  7. C. H. I. Ramos and R. L. Baldwin, “Sulfate anion stabilization of native ribonuclease A both by anion binding and by the Hofmeister effect,” Protein Science, vol. 11, no. 7, pp. 1771–1778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Estell, “Engineering enzymes for improved performance in industrial applications,” Journal of Biotechnology, vol. 28, no. 1, pp. 25–30, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Kirk, T. V. Borchert, and C. C. Fuglsang, “Industrial enzyme applications,” Current Opinion in Biotechnology, vol. 13, no. 4, pp. 345–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Anjum, V. Rishi, and F. Ahmad, “Compatibility of osmolytes with Gibbs energy of stabilization of proteins,” Biochimica et Biophysica Acta, vol. 1476, no. 1, pp. 75–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Arakawa and S. N. Timasheff, “Stabilization of protein structure by sugars,” Biochemistry, vol. 21, no. 25, pp. 6536–6544, 1982. View at Google Scholar · View at Scopus
  12. N. K. Poddar, Z. A. Ansari, R. K. Singh, A. A. Moosavi-Movahedi, and F. Ahmad, “Effect of monomeric and oligomeric sugar osmolytes on ΔGD, the Gibbs energy of stabilization of the protein at different pH values: is the sum effect of monosaccharide individually additive in a mixture?” Biophysical Chemistry, vol. 138, no. 3, pp. 120–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. K. Kaushik and R. Bhat, “Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26458–26465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. K. Yadav and V. Prakash, “Thermal stability of alpha-amylase in aqueous cosolvent systems,” Journal of Biosciences, vol. 34, no. 3, pp. 377–387, 2009. View at Google Scholar · View at Scopus
  15. J. A. Anderson, “Additive effects of alcohols and polyols on thermostability of pepper leaf extracts,” Journal of the American Society for Horticultural Science, vol. 132, no. 1, pp. 67–72, 2007. View at Google Scholar · View at Scopus
  16. Y. H. Wong and S. Tayyab, “Protein stabilizing potential of simulated honey sugar cocktail under various denaturation conditions,” Process Biochemistry, vol. 47, no. 12, pp. 1933–1943, 2012. View at Google Scholar
  17. S. Ouchemoukh, P. Schweitzer, M. Bachir Bey, H. Djoudad-Kadji, and H. Louaileche, “HPLC sugar profiles of Algerian honeys,” Food Chemistry, vol. 121, no. 2, pp. 561–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Bogdanov, T. Jurendic, R. Sieber, and P. Gallmann, “Honey for nutrition and health: a review,” Journal of the American College of Nutrition, vol. 27, no. 6, pp. 677–689, 2008. View at Google Scholar · View at Scopus
  19. G. Hungerford, J. Benesch, J. F. Mano, and R. L. Reis, “Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin,” Photochemical and Photobiological Sciences, vol. 6, no. 2, pp. 152–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. N. Pace and J. M. Scholtz, “Measuring the conformational stability of a protein,” in Protein Structure: A Practical Approach, T. E. Creighton, Ed., pp. 299–321, Oxford University Press, Oxford, UK, 1997. View at Google Scholar
  21. A. Belay, W. K. Solomon, G. Bultossa, N. Adgaba, and S. Melaku, “Physicochemical properties of the Harenna forest honey, Bale, Ethiopia,” Food Chemistry, vol. 141, pp. 3386–3392, 2013. View at Google Scholar
  22. B. O. de Lumen and A. L. Tappel, “Fluorescein-hemoglobin as a substrate for cathepsin D and other proteases,” Analytical Biochemistry, vol. 36, no. 1, pp. 22–29, 1970. View at Google Scholar · View at Scopus
  23. B. X. Huang, H.-Y. Kim, and C. Dass, “Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 8, pp. 1237–1247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. Chen and J. R. Knutson, “Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers,” Analytical Biochemistry, vol. 172, no. 1, pp. 61–77, 1988. View at Google Scholar · View at Scopus
  25. T. Forster and E. Konig, “Absorption spectra and fluorescence properties of concentrated solutions of organic dyes,” Journal of Electrochemistry, Reports the Bunsen Society For Physical Chemistry, vol. 61, no. 3, pp. 344–348, 1957. View at Google Scholar
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, NY, USA, 2nd edition, 1999.
  27. F. J. Green, The Sigma-Aldrich Handbook of Stains, Dyes, and Indicators, Sigma Chemical Company, Milwaukee, Wis, USA, 1990.
  28. S. Tayyab, B. Ahmad, Y. Kumar, and M. M. Khan, “Salt-induced refolding in different domains of partially folded bovine serum albumin,” International Journal of Biological Macromolecules, vol. 30, no. 1, pp. 17–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Kumar, S. Muzammil, and S. Tayyab, “Influence of fluoro, chloro and alkyl alcohols on the folding pathway of human serum albumin,” The Journal of Biochemistry, vol. 138, no. 4, pp. 335–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Leggio, L. Galantini, P. V. Konarev, and N. V. Pavel, “Urea-induced denaturation orocess on defatted human serum albumin and in the presence of palmitic acid,” Journal of Physical Chemistry B, vol. 113, no. 37, pp. 12590–12602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Muzammil, Y. Kumar, and S. Tayyab, “Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation,” Proteins: Structure, Function and Genetics, vol. 40, no. 1, pp. 29–38, 2000. View at Google Scholar
  32. Y. Tamura and K. Gekko, “Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility,” Biochemistry, vol. 34, no. 6, pp. 1878–1884, 1995. View at Google Scholar · View at Scopus
  33. G. Zoldák, A. Zubrik, A. Musatov, M. Stupák, and E. Sedlák, “Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure,” The Journal of Biological Chemistry, vol. 279, no. 46, pp. 47601–47609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. F. Back, D. Oakenfull, and M. B. Smith, “Increased thermal stability of proteins in the presence of sugars and polyols,” Biochemistry, vol. 18, no. 23, pp. 5191–5196, 1979. View at Google Scholar · View at Scopus
  35. D. W. Bolen and I. V. Baskakov, “The osmophobic effect: natural selection of a thermodynamic force in protein folding,” Journal of Molecular Biology, vol. 310, no. 5, pp. 955–963, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. N. Timasheff, “Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9721–9726, 2002. View at Publisher · View at Google Scholar · View at Scopus