Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 173531, 11 pages
http://dx.doi.org/10.1155/2014/173531
Research Article

Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

1College of Mechanics and Materials, Hohai University, 1 Xikang Road, Nanjing 210098, China
2State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
3CCCC Tunnel Engineering Company Limited, Beijing 100088, China
4Geotechnical Research Institute of Hohai University, Nanjing 210098, China

Received 30 December 2013; Accepted 10 March 2014; Published 16 April 2014

Academic Editors: G. Morcous and J. Zheng

Copyright © 2014 Fanlu Min et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, S. Wu, and J. Zhou, “Strength values of cementitious materials in bending and in tension test methods,” Journal of Materials in Civil Engineering, vol. 26, pp. 484–490, 2014. View at Google Scholar
  2. X. Chen, S. Wu, and J. Zhou, “Analysis of mechanical properties of concrete cores using statistical approach,” Magazine of Concrete Research, vol. 65, pp. 1463–1471, 2013. View at Google Scholar
  3. X. Chen, S. Wu, J. Zhou, Y. Chen, and A. Qin, “Effect of testing method and strain rate on stress-strain behavior of concrete,” Journal of Materials in Civil Engineering, vol. 25, pp. 1752–1761, 2013. View at Google Scholar
  4. X. Chen, S. Wu, and J. Zhou, “Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete,” Construction and Building Materials, vol. 43, pp. 419–430, 2013. View at Google Scholar
  5. R. Lorefice, G. Etse, and I. Carol, “Viscoplastic approach for rate-dependent failure analysis of concrete joints and interfaces,” International Journal of Solids and Structures, vol. 45, no. 9, pp. 2686–2705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Chen, S. Wu, and J. Zhou, “Experimental study and analytical formulation of mechanical behavior of concrete,” Construction and Building Materials, vol. 43, pp. 662–670, 2013. View at Google Scholar
  7. J. F. Georgin and J. M. Reynouard, “Modeling of structures subjected to impact: concrete behaviour under high strain rate,” Cement and Concrete Composites, vol. 25, no. 1, pp. 131–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Légeron, P. Paultre, and J. Mazars, “Damage mechanics modeling of nonlinear seismic behavior of concrete structures,” Journal of Structural Engineering, vol. 131, no. 6, pp. 946–955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Lu and K. Xu, “Modelling of dynamic behaviour of concrete materials under blast loading,” International Journal of Solids and Structures, vol. 41, no. 1, pp. 131–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Chen, S. Wu, and J. Zhou, “Strength values of cementitious materials in bending and in tension test methods,” Journal of Materials in Civil Engineering, vol. 26, pp. 484–490, 2014. View at Google Scholar
  11. B. L. Atchley and H. L. Furr, “Strength and energy absorption capablities of plain concrete under dynamic and static loadings,” ACI Journal Proceedings, vol. 64, no. 11, pp. 745–756, 1967. View at Google Scholar
  12. B. P. Hughes and A. J. Watson, “Compressive strength and ultimate strain of concrete under impact loading,” Magazine of Concrete Research, vol. 30, no. 105, pp. 189–199, 1978. View at Google Scholar
  13. J. R. Klepaczko and A. Brara, “Experimental method for dynamic tensile testing of concrete by spalling,” International Journal of Impact Engineering, vol. 25, no. 4, pp. 387–409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Brara and J. R. Klepaczko, “Dynamic tensile behavior of concrete: experiment and numerical analysis,” ACI Materials Journal, vol. 101, no. 2, pp. 162–167, 2004. View at Google Scholar · View at Scopus
  15. B. Erzar and P. Forquin, “An experimental method to determine the tensile strength of concrete at high rates of strain,” Experimental Mechanics, vol. 50, no. 7, pp. 941–955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Martin, J. Stanton, N. Mitra, and L. N. Lowes, “Experimental testing to determine concrete fracture energy using simple laboratory test setup,” ACI Materials Journal, vol. 104, no. 6, pp. 575–584, 2007. View at Google Scholar · View at Scopus
  17. C. Rocco, G. V. Guinea, J. Planas, and M. Elices, “Review of the splitting-test standards from a fracture mechanics point of view,” Cement and Concrete Research, vol. 31, no. 1, pp. 73–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Yan and G. Lin, “Dynamic properties of concrete in direct tension,” Cement and Concrete Research, vol. 36, no. 7, pp. 1371–1378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Davies and D. K. Bose, “Stress distribution in splitting tests,” ACI Journal Proceedings, vol. 65, no. 8, pp. 662–669, 1968. View at Google Scholar
  20. Q. Z. Wang, W. Li, and H. P. Xie, “Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup,” Mechanics of Materials, vol. 41, no. 3, pp. 252–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. E. Lambert and C. A. Ross, “Strain rate effects on dynamic fracture and strength,” International Journal of Impact Engineering, vol. 24, no. 10, pp. 985–998, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Chen, K. Xia, F. Dai, F. Lu, and S. N. Luo, “Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing,” Engineering Fracture Mechanics, vol. 76, no. 9, pp. 1268–1276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. B. Lu and Q. M. Li, “About the dynamic uniaxial tensile strength of concrete-like materials,” International Journal of Impact Engineering, vol. 38, no. 4, pp. 171–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Gomez, A. Shukla, and A. Sharma, “Static and dynamic behavior of concrete and granite in tension with damage,” Theoretical and Applied Fracture Mechanics, vol. 36, no. 1, pp. 37–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Z. Wang, X. M. Jia, S. Q. Kou, Z. X. Zhang, and P.-A. Lindqvist, “The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 2, pp. 245–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Bisschop and J. G. M. van Mier, “Effect of aggregates and microcracks on the drying rate of cementitious composites,” Cement and Concrete Research, vol. 38, no. 10, pp. 1190–1196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. de Sa, F. Benboudjema, M. Thiery, and J. Sicard, “Analysis of microcracking induced by differential drying shrinkage,” Cement and Concrete Composites, vol. 30, no. 10, pp. 947–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Weerheijm and J. C. A. M. Van Doormaal, “Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests,” International Journal of Impact Engineering, vol. 34, no. 3, pp. 609–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. X. X. Zhang, G. Ruiz, and R. C. Yu, “Experimental study of combined size and strain rate effects on the fracture of reinforced concrete,” Journal of Materials in Civil Engineering, vol. 20, no. 8, pp. 544–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. X. Zhang, R. C. Yu, G. Ruiz, M. Tarifa, and M. A. Camara, “Effect of loading rate on crack velocities in HSC,” International Journal of Impact Engineering, vol. 37, no. 4, pp. 359–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. F. H. Wittmann, P. E. Roelfstra, H. Mihashi, Y.-Y. Huang, X.-H. Zhang, and N. Nomura, “Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete,” Materials and Structures, vol. 20, no. 2, pp. 103–110, 1987. View at Publisher · View at Google Scholar · View at Scopus
  32. H. W. Reinhardt, H. A. W. Cornelissen, and D. A. Hordijk, “Tensile tests and failure analysis of concrete,” Journal of Structural Engineering, vol. 112, no. 11, pp. 2462–2477, 1986. View at Google Scholar · View at Scopus
  33. D. Asprone, E. Cadoni, and A. Prota, “Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates,” ACI Structural Journal, vol. 106, no. 1, pp. 106–113, 2009. View at Google Scholar · View at Scopus
  34. J. Zhou, X. Chen, L. Wu, and X. Kan, “Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate,” Sadhana-Academy Proceedings in Engineering Sciences, vol. 36, no. 3, pp. 357–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. L. Grote, S. W. Park, and M. Zhou, “Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization,” International Journal of Impact Engineering, vol. 25, no. 9, pp. 869–886, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. M. Li and H. Meng, “About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test,” International Journal of Solids and Structures, vol. 40, no. 2, pp. 343–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Candoni, K. Labibes, C. Albertini, M. Berra, and M. Giangrasso, “Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels,” Materials and Structures, vol. 34, no. 235, pp. 21–26, 2001. View at Google Scholar · View at Scopus
  38. S. Harsh, Z. Shen, and D. Darwin, “Strain-rate sensitive behavior of cement paste and mortar in compression,” ACI Materials Journal, vol. 87, no. 5, pp. 508–516, 1990. View at Google Scholar · View at Scopus
  39. J. W. Tedesco and C. A. Ross, “Strain-rate-dependent constitutive equations for concrete,” Journal of Pressure Vessel Technology, vol. 120, no. 4, pp. 398–405, 1998. View at Google Scholar · View at Scopus
  40. J. W. Tedesco, J. C. Powell, C. A. Ross, and M. L. Hughes, “A strain-rate-dependent concrete material model for ADINA,” Computers & Structures, vol. 64, no. 5-6, pp. 1053–1067, 1997. View at Google Scholar · View at Scopus
  41. L. J. Malvar and C. A. Ross, “Review of strain rate effects for concrete in tension,” ACI Materials Journal, vol. 95, no. 6, pp. 735–739, 1998. View at Google Scholar · View at Scopus
  42. M. Katayama, M. Itoh, S. Tamura, M. Beppu, and T. Ohno, “Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials,” International Journal of Impact Engineering, vol. 34, no. 9, pp. 1546–1561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Q. Zhou and H. Hao, “Mesoscale modelling of concrete tensile failure mechanism at high strain rates,” Computers and Structures, vol. 86, no. 21-22, pp. 2013–2026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Cadoni, “Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension,” Rock Mechanics and Rock Engineering, vol. 43, no. 6, pp. 667–676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. CEB-FIP Model Code 1990, Redwood Books, Wiltshire, UK, 1993.
  46. S. N. Zhurkov, “Kinetic concept of the strength of solids,” International Journal of Fracture, vol. 26, no. 4, pp. 295–307, 1984. View at Publisher · View at Google Scholar · View at Scopus