Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 174282, 6 pages
http://dx.doi.org/10.1155/2014/174282
Review Article

Curcumin as a Therapeutic Agent in Dementia: A Mini Systematic Review of Human Studies

1Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
2Department of Public Health, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy

Received 31 August 2013; Accepted 7 November 2013; Published 22 January 2014

Academic Editors: A. Biegon and C. Capurso

Copyright © 2014 Natascia Brondino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, and C. P. Ferri, “The global prevalence of dementia: a systematic review and metaanalysis,” Alzheimer's & Dementia, vol. 9, pp. 63–75, 2013. View at Google Scholar
  2. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999. View at Google Scholar · View at Scopus
  4. A. Levey, J. Lah, F. Goldstein, K. Steenland, and D. Bliwise, “Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease,” Clinical Therapeutics, vol. 28, no. 7, pp. 991–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Iwata, S. Tsubuki, Y. Takaki et al., “Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition,” Nature Medicine, vol. 6, no. 2, pp. 143–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. L. Masters, G. Simms, and N. A. Weinman, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 12, pp. 4245–4249, 1985. View at Google Scholar · View at Scopus
  7. C. Zhang, A. Browne, J. R. Divito et al., “Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density,” Journal of Alzheimer's Disease, vol. 22, no. 2, pp. 683–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-C. Huang and Z.-F. Jiang, “Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 1, pp. 15–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. B. Aggarwal, C. Sundaram, N. Malani, and H. Ichikawa, “Curcumin: the Indian solid gold,” Advances in Experimental Medicine and Biology, vol. 595, pp. 1–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ganguli, V. Chandra, M. I. Kamboh et al., “Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US cross-national dementia study,” Archives of Neurology, vol. 57, no. 6, pp. 824–830, 2000. View at Google Scholar · View at Scopus
  11. T.-P. Ng, P.-C. Chiam, T. Lee, H.-C. Chua, L. Lim, and E.-H. Kua, “Curry consumption and cognitive function in the elderly,” American Journal of Epidemiology, vol. 164, no. 9, pp. 898–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-Y. Park, H.-S. Kim, E.-K. Cho et al., “Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation,” Food and Chemical Toxicology, vol. 46, no. 8, pp. 2881–2887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhang, M. Fiala, J. Cashman et al., “Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer's disease patients,” Journal of Alzheimer's Disease, vol. 10, no. 1, pp. 1–7, 2006. View at Google Scholar · View at Scopus
  14. H. Kim, B.-S. Park, K.-G. Lee et al., “Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid,” Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8537–8541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ono, K. Hasegawa, H. Naiki, and M. Yamada, “Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro,” Journal of Neuroscience Research, vol. 75, no. 6, pp. 742–750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Yang, G. P. Lim, A. N. Begum et al., “Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5892–5901, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Shimmyo, T. Kihara, A. Akaike, T. Niidome, and H. Sugimoto, “Epigallocatechin-3 -gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation,” NeuroReport, vol. 19, no. 13, pp. 1329–1333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Lin, X. Chen, W. Li, Y. Han, P. Liu, and R. Pi, “Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin,” Neuroscience Letters, vol. 440, no. 3, pp. 344–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Ahmed, A.-H. Gilani, N. Hosseinmardi, S. Semnanian, S. A. Enam, and Y. Fathollahi, “Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices,” Synapse, vol. 65, no. 7, pp. 572–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Ringman, S. A. Frautschy, G. M. Cole, D. L. Masterman, and J. L. Cummings, “A potential role of the curry spice curcumin in Alzheimer's disease,” Current Alzheimer Research, vol. 2, no. 2, pp. 131–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. P. Lim, T. Chu, F. Yang, W. Beech, S. A. Frautschy, and G. M. Cole, “The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse,” Journal of Neuroscience, vol. 21, no. 21, pp. 8370–8377, 2001. View at Google Scholar · View at Scopus
  22. S. A. Frautschy, W. Hu, P. Kim et al., “Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology,” Neurobiology of Aging, vol. 22, no. 6, pp. 993–1005, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. N. Begum, M. R. Jones, G. P. Lim et al., “Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 1, pp. 196–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Garcia-Alloza, E. M. Robbins, S. X. Zhang-Nunes et al., “Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease,” Neurobiology of Disease, vol. 24, no. 3, pp. 516–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Hamaguchi, K. Ono, A. Murase, and M. Yamada, “Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-β aggregation pathway,” American Journal of Pathology, vol. 175, no. 6, pp. 2557–2565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A.-L. Cheng, C.-H. Hsu, J.-K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4 B, pp. 2895–2900, 2001. View at Google Scholar · View at Scopus
  27. C. D. Lao, M. T. Ruffin IV, D. Normolle et al., “Dose escalation of a curcuminoid formulation,” BMC Complementary and Alternative Medicine, vol. 6, article 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Baum, C. W. K. Lam, S. K.-K. Cheung et al., “Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease,” Journal of Clinical Psychopharmacology, vol. 28, no. 1, pp. 110–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Ringman, S. A. Frautschy, E. Teng et al., “Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study,” Alzheimer's Research & Therapy, vol. 4, p. 43, 2012. View at Google Scholar
  30. N. Hishikawa, Y. Takahashi, Y. Amakusa et al., “Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia,” Ayu, vol. 33, pp. 499–504, 2012. View at Google Scholar
  31. http://clinicaltrials.gov/ct2/show/NCT00595582.
  32. http://clinicaltrials.gov/ct2/show/NCT01001637.
  33. http://www.clinicaltrials.gov/ct2/show/NCT01383161.
  34. http://clinicaltrials.gov/ct2/show/NCT01811381.
  35. http://www.anzctr.org.au/ACTRN12613000681752.aspx.
  36. C. R. Ireson, D. J. L. Jones, S. Orr et al., “Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 1, pp. 105–111, 2002. View at Google Scholar · View at Scopus
  37. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. S. R. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Sasaki, Y. Sunagawa, K. Takahashi et al., “Innovative preparation of curcumin for improved oral bioavailability,” Biological and Pharmaceutical Bulletin, vol. 34, no. 5, pp. 660–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Shaikh, D. D. Ankola, V. Beniwal, D. Singh, and M. N. V. R. Kumar, “Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer,” European Journal of Pharmaceutical Sciences, vol. 37, no. 3-4, pp. 223–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. K. Cheng, C. F. Yeung, S. W. Ho, S. F. Chow, A. H. Chow, and L. Baum, “Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's disease Tg2576 mice,” The AAPS Journal, vol. 15, pp. 324–336, 2013. View at Google Scholar
  41. Z. Ma, A. Shayeganpour, D. R. Brocks, A. Lavasanifar, and J. Samuel, “High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin,” Biomedical Chromatography, vol. 21, no. 5, pp. 546–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Liu, H. Lou, L. Zhao, and P. Fan, “Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin,” Journal of Pharmaceutical and Biomedical Analysis, vol. 40, no. 3, pp. 720–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. E. Golde, L. S. Schneider, and E. H. Koo, “Anti-Aβ therapeutics in alzheimer's disease: the need for a paradigm shift,” Neuron, vol. 69, no. 2, pp. 203–213, 2011. View at Publisher · View at Google Scholar · View at Scopus