Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 235656, 18 pages
Research Article

The Effects of Forming Parameters on Conical Ring Rolling Process

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China

Received 24 April 2014; Revised 28 June 2014; Accepted 29 June 2014; Published 17 August 2014

Academic Editor: Huamin Zhou

Copyright © 2014 Wen Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring’s outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring’s cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring’s outer surfaces. As the ring’s outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring’s outer radius growth rate and rolls sizes were obtained.