Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 248041, 13 pages
http://dx.doi.org/10.1155/2014/248041
Research Article

Distributed Leader-Following Finite-Time Consensus Control for Linear Multiagent Systems under Switching Topology

1Wenzhou Vocational College of Science & Technology, Zhejiang 325006, China
2College of Information Engineering, Zhejiang University of Technology, Zhejiang 310023, China
3Institute of Intelligent Systems and Decision, Wenzhou University, Zhejiang 325027, China

Received 18 January 2014; Accepted 24 March 2014; Published 24 April 2014

Academic Editors: H. R. Karimi and X. Yang

Copyright © 2014 Xiaole Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Murray, “Recent research in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement and Control, vol. 129, no. 5, pp. 571–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Jin and L. Gao, “Stability analysis of a double integrator swarm model related to position and velocity,” Transactions of the Institute of Measurement and Control, vol. 30, no. 3-4, pp. 275–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a virtual leader,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 293–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. R. Karimi, “Robust delay-dependent H control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching parameters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1910–1923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local information exchange,” International Journal of Robust and Nonlinear Control, vol. 17, no. 10-11, pp. 1002–1033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Du, S. Li, and P. Shi, “Robust consensus algorithm for second-order multi-agent systems with external disturbances,” International Journal of Control, vol. 85, no. 12, pp. 1913–1928, 2012. View at Publisher · View at Google Scholar
  9. L. Gao, X. Zhu, and W. Chen, “Leader-following consensus problem with an accelerated motion leader,” International Journal of Control, Automation, and Systems, vol. 10, no. 5, pp. 931–939, 2012. View at Publisher · View at Google Scholar
  10. F. Xiao and L. Wang, “Consensus problems for high-dimensional multi-agent systems,” IET Control Theory and Applications, vol. 1, no. 3, pp. 830–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. He and J. Cao, “Consensus control for high-order multi-agent systems,” IET Control Theory and Applications, vol. 5, no. 1, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Yang, “Stability switches of arbitrary high-order consensus in multiagent networks with time delays,” The Scientific World Journal, vol. 2013, Article ID 514823, 7 pages, 2013. View at Publisher · View at Google Scholar
  13. W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems & Control Letters, vol. 59, no. 3-4, pp. 209–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010. View at Publisher · View at Google Scholar
  15. Z. Li, X. Liu, P. Lin, and W. Ren, “Consensus of linear multi-agent systems with reduced-order observer-based protocols,” Systems & Control Letters, vol. 60, no. 7, pp. 510–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp. 1948–1952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Xu, S. Chen, W. Huang, and L. Gao, “Leader-following consensus of discrete-time multi-agent systems with observer-based protocols,” Neurocomputing, vol. 118, pp. 334–341, 2013. View at Publisher · View at Google Scholar
  18. Y. Zhang, L. Gao, and C. Tong, “On distributed reduced-order observer-based protocol for linear multi-agent consensus under switching topology,” Abstract and Applied Analysis, vol. 2013, Article ID 793276, 13 pages, 2013. View at Publisher · View at Google Scholar
  19. B. Xu, L. Gao, Y. Zhang, and X. Xu, “Leader-following consensus stability of discrete-time linear multiagent systems with observer-based protocols,” Abstract and Applied Analysis, vol. 2013, Article ID 357971, 10 pages, 2013. View at Publisher · View at Google Scholar
  20. S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751–766, 2000. View at Google Scholar · View at Scopus
  21. Y. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems,” Systems & Control Letters, vol. 46, no. 4, pp. 231–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Hong, J. Huang, and Y. Xu, “On an output feedback finite-time stabilization problem,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 305–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. G. Nersesov, W. M. Haddad, and Q. Hui, “Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions,” Journal of the Franklin Institute, vol. 345, no. 7, pp. 819–837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Amato, M. Ariola, and P. Dorato, “Finite-time control of linear systems subject to parametric uncertainties and disturbances,” Automatica, vol. 37, no. 9, pp. 1459–1463, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Amato, M. Ariola, and C. Cosentino, “Finite-time stabilization via dynamic output feedback,” Automatica, vol. 42, no. 2, pp. 337–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Amato, M. Ariola, and C. Cosentino, “Finite-time control of discrete-time linear systems: analysis and design conditions,” Automatica, vol. 46, no. 5, pp. 919–924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Amato, R. Ambrosino, C. Cosentino, and G. de Tommasi, “Input-output finite time stabilization of linear systems,” Automatica, vol. 46, no. 9, pp. 1558–1562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Amato, G. de Tommasi, and A. Pironti, “Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear system,” Automatica, vol. 49, no. 8, pp. 2546–2550, 2013. View at Publisher · View at Google Scholar
  29. F. Sun, J. Chen, Z.-H. Guan, L. Ding, and T. Li, “Leader-following finite-time consensus for multi-agent systems with jointly-reachable leader,” Nonlinear Analysis: Real World Applications, vol. 13, no. 5, pp. 2271–2284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Mei, M. Jiang, W. Xu, and B. Wang, “Finite-time synchronization control of complex dynamicaly networks with time delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 9, pp. 2462–2478, 2013. View at Google Scholar
  31. Y. Zhang and Y. Yang, “Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements,” Physics Letters A, vol. 377, no. 3-4, pp. 243–249, 2013. View at Google Scholar
  32. P. Dorato, “Short time stability in linear time-varying systems,” in Proceeding of the IRE Internation Convention Record, part 4, pp. 83–87, 1961.
  33. S. P. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, Pa, USA, 1994.
  34. R. Horn and C. Johnson, Matrix Analysis, Cambbridge University Press, New York, NY, USA, 1985.
  35. W. M. Wonham, Linear Multivariable Contol, Springer, New York, NY, USA, 1985.