Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 258068, 8 pages
http://dx.doi.org/10.1155/2014/258068
Research Article

A High-Speed and Low-Offset Dynamic Latch Comparator

1Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Mimos Berhad, 57000 Kuala Lumpur, Malaysia

Received 15 March 2014; Revised 27 May 2014; Accepted 10 June 2014; Published 9 July 2014

Academic Editor: Ramesh Pokharel

Copyright © 2014 Labonnah Farzana Rahman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Allan, “International Technology Roadmap for Semiconductors (ITRS),” Semiconductor Industry Association (SIA), 2008, http://public.itrs.net/.
  2. C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “Low power/low voltage high speed CMOS differential track and latch comparator with rail-to-rail input,” in Proceedings of the IEEE Internaitonal Symposium on Circuits and Systems, vol. 5, pp. 653–656, Geneva, Switzerland, May 2000. View at Scopus
  3. L. F. Rahman, M. B. I. Reaz, M. A. M. Ali, M. R. Marufuzzaman, and M. R. Alam, “Beyond the WIFI: introducing RFID system using IPV6,” in Proceedings of the 3rd ITU-T Kaleidoscope Academic Conference: Beyond the Internet? Innovations for Future Networks and Services, pp. 209–212, Pune, India, December 2010. View at Scopus
  4. J. Jalil, M. B. I. Reaz, M. A. S. Bhuiyan, L. F. Rahman, and T. G. Chang, “Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process,” The Scientific World Journal, vol. 2014, Article ID 580385, 6 pages, 2014. View at Publisher · View at Google Scholar
  5. M. Marufuzzaman, M. Reaz, L. F. Rahman, and T. G. Chang, “High speed current dq PI controller for vector controlled PMSM drive,” The Scientific World Journal, vol. 2014, Article ID 709635, 9 pages, 2014. View at Publisher · View at Google Scholar
  6. B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1916–1926, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Lee, “A low-voltage low-power comparator with current-controlled dynamically-biased preamplifiers for DCM buck regulators,” in Proceedings of the 16th IEEE International Conference on Electronics, Circuits and Systems (ICECS '09), pp. 371–374, Yasmine Hammamet, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. M. Furth, Y. Tsen, V. B. Kulkarni, and T. K. Poriyani House Raju, “On the design of low-power CMOS comparators with programmable hysteresis,” in Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS '10), pp. 1077–1080, Seattle, Wash, USA, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Otfinowski, “A 2.5MS/s 225 μW 8-bit charge redistribution SAR ADC for multichannel applications,” in Proceedings of the 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES '10), pp. 182–185, Warsaw, Poland, June 2010. View at Scopus
  10. H. J. Achigui, C. Fayomi, D. Massicotte, and M. Boukadoum, “Low-voltage, high-speed CMOS analog latched voltage comparator using the flipped voltage follower as input stage,” Microelectronics Journal, vol. 42, no. 5, pp. 785–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Nuzzo, C. Nani, C. Armiento, A. Sangiovanni-Vincentelli, J. Craninckx, and G. van der Plas, “A 6-Bit 50-MS/s threshold configuring SAR ADC in 90-nm digital CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 1, pp. 80–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Xu and T. Ytterdal, “A 7-bit 50MS/s single-ended asynchronous SAR ADC in 65nm CMOS,” in Proceedings of the IEEE International Conferecne NORCHIP, pp. 1–4, Vilnius, Lithunia, November 2013. View at Publisher · View at Google Scholar
  13. H. J. Veendrick, “The behavior of flip-flops used as synchronizers and prediction of their failure rate,” IEEE Journal of Solid-State Circuits, vol. 15, no. 2, pp. 169–176, 1980. View at Google Scholar · View at Scopus
  14. H. Hong and G. Lee, “A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC,” IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2161–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Wang, K. Li, J. Zhang, and B. Nie, “A high-speed high-resolution latch comparator for pipeline Analog-to-Digital Converters,” in Proceedings of the IEEE International Workshop on Anti-counterfeiting, Security, Identification (ASID '07), pp. 28–31, Fujian, Xiamen, China, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhu, G. Yu, H. Wu, Y. Zhang, and Y. Yang, “A high-speed latched comparator with low offset voltage and low dissipation,” Analog Integrated Circuits and Signal Processing, vol. 74, no. 2, pp. 467–471, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. D. N. Kapadia and P. P. Gandhi, “Implementation of CMOS charge sharing dynamic latch comparator in 130 nm and 90 nm technologies,” in Proceedings of the IEEE Conference on Information and Communication Technologies (ICT '13), pp. 16–20, JeJu Island, Republic of Korea, April 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Singh and M. Gupta, “High frequency flipped voltage follower with improved performance and its application,” Microelectronics Journal, vol. 44, no. 12, pp. 1175–1192, 2013. View at Publisher · View at Google Scholar
  19. V. Bhumireddy, K. Shaik, A. Amara et al., “Design of low power and high speed comparator with sub-32-nm double gate-mosfet,” in Proceedings of the IEEE International Conference on in Circuits and Systems, pp. 1–4, Kuala Lumpur, Malaysia, September 2013.
  20. K. Dabbagh-Sadeghipour, K. Hadidi, and A. Khoei, “A new architecture for area and power efficient, high conversion rate successive approximation ADCs,” in Proceedings of the 2nd Annual IEEE Northeast Workshop on Circuits and Systems (NEWCAS '04), pp. 253–256, June 2004. View at Scopus
  21. M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC '08), pp. 269–272, Fukuoka, Japan, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1196–1205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. B. Cho and P. R. Gray, “10-bit, 20-MS/s, 35-mW pipeline A/D converter,” in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 499–502, San Diego, Calif, USA, May 1994. View at Scopus
  24. G. M. Yin, F. O. Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE Journal of Solid-State Circuits, vol. 27, no. 2, pp. 208–211, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Graupner, A Methodology for the Offset Simulation of Comparators, vol. 1, 2006.
  26. M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and B. Nauta, “A 1.9 μw 4.4 fJ/conversion-step 10 b 1 MS/S charge-redistribution ADC,” in Proceedings of the IEEE International Solid State Circuits Conference (ISSCC '08), pp. 237–610, San Francisco, Calif, USA, February 2008. View at Publisher · View at Google Scholar · View at Scopus