Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 265953, 7 pages
http://dx.doi.org/10.1155/2014/265953
Research Article

Comparison of Solubilization Capacity of Resveratrol in Sodium 3α,12α-Dihydroxy-7-oxo-5β-cholanoate and Sodium Dodecyl Sulfate

Department of Pharmacy, Faculty of Medicine, Hajduk Veljkova 3, University of Novi Sad, 21000 Novi Sad, Serbia

Received 31 August 2013; Accepted 22 October 2013; Published 29 January 2014

Academic Editors: R. Rivelino and R. Schweiss

Copyright © 2014 Jelena Cvejić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kawamura, Y. Murata, T. Yamaguchi et al., “Spin-label studies of bile salt micelles,” Journal of Physical Chemistry, vol. 93, no. 8, pp. 3321–3326, 1989. View at Google Scholar · View at Scopus
  2. E. Bottari, A. A. D'Archivio, M. R. Festa, L. Galantini, and E. Giglio, “Structure and composition of sodium taurocholate micellar aggregates,” Langmuir, vol. 15, no. 8, pp. 2996–2998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Coleman, “Bile salts and biliary lipids,” Biochemical Society Transactions, vol. 15, supplement, pp. 68S–80S, 1987. View at Google Scholar
  4. P. Garidel, A. Hildebrand, R. Neubert, and A. Blume, “Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry,” Langmuir, vol. 16, no. 12, pp. 5267–5275, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Camile, The Practice of Medicinal Chemistry, Academic Press, Oxford, UK, 2003.
  6. M. Calabresi, P. Andreozzi, and C. La Mesa, “Supra-molecular association and polymorphic behaviour in systems containing bile acid salts,” Molecules, vol. 12, no. 8, pp. 1731–1754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Langcake and R. J. Pryce, “The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury,” Physiological Plant Pathology, vol. 9, no. 1, pp. 77–86, 1976. View at Google Scholar · View at Scopus
  8. V. Sobolev and R. J. Cole, “trans-resveratrol content in commercial peanuts and peanut products,” Journal of Agricultural and Food Chemistry, vol. 47, pp. 1435–1439, 1999. View at Google Scholar
  9. D. M. Goldberg, “Does wine work?” Clinical Chemistry, vol. 41, pp. 14–16, 1995. View at Google Scholar
  10. F. Mattivi, F. Reniero, and S. Korhammer, “Isolation, characterization, and evolution in red wine vinification of resveratrol monomers,” Journal of Agricultural and Food Chemistry, vol. 43, no. 7, pp. 1820–1823, 1995. View at Google Scholar · View at Scopus
  11. A. Novakovic, L. Gojkovic-Bukarica, M. Peric et al., “The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery,” Journal of Pharmacological Sciences, vol. 101, no. 1, pp. 85–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. F. Hung, Y. K. Lin, Z. R. Huang, and J. Y. Fang, “Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin,” Biological and Pharmaceutical Bulletin, vol. 31, no. 5, pp. 955–962, 2008. View at Google Scholar
  13. M. Poša and K. Kuhajda, “Hydrophobicity and haemolytic potential of oxo derivatives of cholic, deoxycholic and chenodeoxycholic acids,” Steroids, vol. 75, no. 6, pp. 424–431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Mikov and J. P. Fawcett, Bile Acids, Mediset Publisher, Geneva, Switzerland, 2007.
  15. M. Poša and K. Kuhajda, “Influence of bile acids on the adsorption of lidocaine and verapamil in an in vitro experiment,” Journal of the Serbian Chemical Society, vol. 75, no. 4, pp. 433–440, 2010. View at Google Scholar
  16. M. Poša, S. Kevrešan, M. Mikov, V. Cirin-Novta, and K. Kuhajda, “Analgesic action of lidocaine and associated biochemical parametars in rats,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 32, no. 2, pp. 109–117, 2007. View at Google Scholar
  17. B. L. Bales, L. Messina, A. Vidal, M. Peric, and O. R. Nascimento, “Precision relative aggregation number determinations of SDS micelles using a spin probe: a model of micelle surface hydration,” Journal of Physical Chemistry B, vol. 102, no. 50, pp. 10347–10358, 1998. View at Google Scholar · View at Scopus
  18. S. Marrakchi and H. I. Maibach, “Sodium lauryl sulfate-induced irritation in the human face: regional and age-related differences,” Skin Pharmacology and Physiology, vol. 19, no. 3, pp. 177–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. F. Tullar, “Hemi-diethylene glycol adduct of 3, 12-dihydroxy-7-ketocholanic acid and preparation,” US Patent 2 549 947, 1951. View at Google Scholar
  20. M. Atanacković, M. Poša, H. Heinle, Lj. Gojković-Bukarica, and J. Cvejić, “Solubilization of resveratrol in micellar solutions of different bile acids,” Colloids and Surfaces B, vol. 72, no. 1, pp. 148–154, 2009. View at Google Scholar
  21. B. C. Trela and A. L. Waterhouse, “Resveratrol: isomeric molar absorptivities and stability,” Journal of Agricultural and Food Chemistry, vol. 44, no. 5, pp. 1253–1257, 1996. View at Google Scholar · View at Scopus
  22. M. Poša, V. Guzsvány, and J. Csanádi, “Determination of critical micellar concentrations of two monoketo derivatives of cholic acid,” Colloids and Surfaces B, vol. 74, no. 1, pp. 84–90, 2009. View at Google Scholar
  23. P. P. Nair and D. Kritchevsky, The Bile Acids, Plenum Press, New York, NY, USA, 1971.
  24. M. Poša, S. Kevrešan, M. Mikov, V. Ćirin-Novta, C. Sarbu, and K. Kuhajda, “Determination of critical micellar concentration of cholic acid and its keto derivatives,” Colloids and Surfaces B, vol. 59, pp. 179–163, 2007. View at Google Scholar
  25. M. Poša, S. Kevrešan, M. Mikov, V. Ćirin-Novta, and K. Kuhajda, “Critical micellar concentrations of keto derivatives of selected bile acids: thermodynamic functions of micelle formation,” Colloids and Surfaces B, vol. 64, no. 2, pp. 151–161, 2008. View at Google Scholar
  26. C. Tanford, The Hydrophobic Effect, John Wiley and Sons, New York, NY, USA, 1980.
  27. V. Y. Bezzobotnov, S. Borbély, L. Cser et al., “Temperature and concentration dependence of properties of sodium dodecyl sulfate micelles determined from small-angle neutron scattering experiments,” Journal of Physical Chemistry, vol. 92, no. 20, pp. 5738–5743, 1988. View at Google Scholar · View at Scopus
  28. M. Poša, “Hydrophobicity and self-association of bile-acids with a special emphasis on oxo derivatives of 5-beta cholanic acid,” Current Organic Chemistry, vol. 16, no. 16, pp. 1876–1904, 2012. View at Google Scholar