Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 290207, 7 pages
http://dx.doi.org/10.1155/2014/290207
Research Article

Critical State of Sand Matrix Soils

1Faculty of Civil Engineering, Construction Research Centre, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
2Faculty of Management and Human Resource Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

Received 10 January 2014; Accepted 16 February 2014; Published 16 March 2014

Academic Editors: J. Lian and J. R. Rabuñal

Copyright © 2014 Aminaton Marto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Boulanger and I. M. Idriss, “Liquefaction susceptibility criteria for silts and clays,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 11, pp. 1413–1426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Prakash and V. K. Puri, “Recent advances in liquefaction of fine grained soils,” in Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, Calif, USA, 2010.
  3. A. Marto and C. S. Tan, “Short review on liquefaction susceptibility,” International Journal of Engineering Research and Applications, vol. 2, pp. 2115–2119, 2012. View at Google Scholar
  4. A. Schofield and C. P. Wroth, Critical State Soil Mechanics, McGrawHill, London, UK, 1968.
  5. M. Jefferies and K. Been, Soil Liquefaction: A Critical State Approach, Taylor & Francis, London, UK, 2006.
  6. C. A. Stamatopoulos, “An experimental study of the liquefaction strength of silty sands in terms of the state parameter,” Soil Dynamics and Earthquake Engineering, vol. 30, no. 8, pp. 662–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Papadopoulou and T. Tika, “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands,” Soils and Foundations, vol. 48, no. 5, pp. 713–725, 2008. View at Google Scholar · View at Scopus
  8. B. Muhunthan and D. L. Worthen, “Critical state framework for liquefaction of fine grained soils,” Engineering Geology, vol. 117, no. 1-2, pp. 2–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Marto, C. S. Tan, A. M. Makhtar, N. Z. M. Yunus, and A. Amaludin, “Undrained shear strength of sand plastic fines mixtures,” Malaysian Journal of Civil Engineering, vol. 25, no. 2, pp. 189–199, 2013. View at Google Scholar
  10. K. Been and M. Jefferies, “Stress-dilatancy in very loose sand,” Canadian Geotechnical Journal, vol. 41, no. 5, pp. 972–989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Casagrande, “Characteristics of cohesionless soils affecting the stability of slopes and earth fills,” Contributions to Soils Mechanics, pp. 1925–1940, 1940. View at Google Scholar
  12. D. W. Taylor, Fundamentals of Soil Mechanics, John Wiley & Sons, London, UK, 1956.
  13. K. H. Roscoe, A. Schofield, and C. P. Wroth, “On the yielding of soils,” Geotechnique, vol. 8, no. 1, pp. 22–53, 1958. View at Google Scholar
  14. G. Castro, Liquefaction of sands [Ph.D. thesis], Harvard University Cambridge, 1969.
  15. A. Casagrande, “Liquefaction and cyclic deformation of sands: a critical review,” in Proceedings of the 5th Panamerican Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, 1975.
  16. S. J. Poulos, “The steady state of deformation,” Journal of the Geotechnical Engineering Division, vol. 107, no. 5, pp. 553–562, 1981. View at Google Scholar · View at Scopus
  17. S. J. Poulos, G. Castro, and J. W. France, “Liquefaction evaluation procedure,” Journal of Geotechnical Engineering, vol. 111, no. 6, pp. 772–792, 1985. View at Google Scholar · View at Scopus
  18. K. Been and M. G. Jefferies, “State parameter for sands,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 22, no. 6, 1985. View at Google Scholar
  19. K. Been, M. G. Jefferies, and J. Hachey, “The critical state of sands,” Geotechnique, vol. 41, no. 3, pp. 365–381, 1991. View at Google Scholar · View at Scopus
  20. J. H. Atkinson, An Introduction to the Mechanics Soils and Foundations: Through Critical State Soil Mechanis, McGraw-Hill, London, UK, 1993.