Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 301879, 12 pages
http://dx.doi.org/10.1155/2014/301879
Research Article

PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

1Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Block 3A, Institute of Postgraduate Studies Building, 50603 Kuala Lumpur, Malaysia

Received 22 October 2013; Accepted 5 January 2014; Published 20 February 2014

Academic Editors: S. G. Clark, M. Pretterklieber, and M. Tsang

Copyright © 2014 Farkaad A. Kadir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson’s trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties.