Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 352654, 13 pages
http://dx.doi.org/10.1155/2014/352654
Review Article

Soft-Sediment Deformation Structures Interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey)

Department of Geological Engineering, Engineering Faculty, Pamukkale University, Kınıklı Campus, 20070 Denizli, Turkey

Received 7 May 2014; Accepted 8 July 2014; Published 24 July 2014

Academic Editor: Karoly Nemeth

Copyright © 2014 Savaş Topal and Mehmet Özkul. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Owen, “Deformation processes in unconsolidated sands,” in Deformation of Sediments and Sedimentary Rocks, M. E. Jones and R. M. F. Preston, Eds., vol. 29, pp. 11–24, Geological Society of London, 1987. View at Google Scholar
  2. G. Owen, “Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples,” Sedimentology, vol. 43, no. 2, pp. 279–293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Owen and M. Moretti, “Identifying triggers for liquefaction-induced soft-sediment deformation in sands,” Sedimentary Geology, vol. 235, no. 3-4, pp. 141–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Owen, M. Moretti, and P. Alfaro, “Recognising triggers for soft-sediment deformation: Current understanding and future directions,” Sedimentary Geology, vol. 235, no. 3-4, pp. 133–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Seilacher, “Fault-graded beds interpreted as seismites,” Sedimentology, vol. 13, pp. 155–159, 1969. View at Google Scholar
  6. J. D. Sims, “Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California,” Science, vol. 182, no. 4108, pp. 161–163, 1973. View at Google Scholar · View at Scopus
  7. J. D. Sims, “Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments,” Tectonophysics, vol. 29, no. 1–4, pp. 141–152, 1975. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Hempton and J. F. Dewey, “Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey,” Tectonophysics, vol. 98, no. 3-4, pp. T14–T17, 1983. View at Google Scholar · View at Scopus
  9. B. Scott and S. Price, “Earthquake-induced structures in young sediments,” Tectonophysics, vol. 147, no. 1-2, pp. 165–170, 1988. View at Google Scholar · View at Scopus
  10. G. Owen, “Soft-sediment deformation in upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon,” Journal of Sedimentary Research A, vol. 65, no. 3, pp. 495–504, 1995. View at Google Scholar · View at Scopus
  11. P. Alfaro, M. Moretti, and J. M. Soria, “Soft-sediment deformation structures induced by earthquakes (seismites) in pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera),” Eclogae Geologicae Helvetiae, vol. 90, no. 3, pp. 531–540, 1997. View at Google Scholar · View at Scopus
  12. M. A. Rodríguez-Pascua, J. P. Calvo, G. De Vicente, and D. Gómez-Gras, “Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene,” Sedimentary Geology, vol. 135, no. 1–4, pp. 117–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Moretti, “Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy),” Sedimentary Geology, vol. 135, no. 1-4, pp. 167–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Bowman, A. Korjenkov, and N. Porat, “Late-Pleistocene seismites from Lake Issyk-Kul, the Tien Shan range, Kyrghyzstan,” Sedimentary Geology, vol. 163, no. 3-4, pp. 211–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Mazumder, A. J. van Loon, and M. Arima, “Soft-sediment deformation structures in the Earth's oldest seismites,” Sedimentary Geology, vol. 186, no. 1-2, pp. 19–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Neuwerth, F. Suter, C. A. Guzman, and G. E. Gorin, “Soft-sediment deformation in a tectonically active area: the Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia),” Sedimentary Geology, vol. 186, no. 1-2, pp. 67–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Moretti and L. Sabato, “Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (Southern Italy): seismic shock vs. overloading,” Sedimentary Geology, vol. 196, no. 1–4, pp. 31–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. H. Kuenen, “Experiments in geology,” Geological Magazine, vol. 23, pp. 1–28, 1958. View at Google Scholar
  19. M. Moretti, P. Alfaro, O. Caselles, and J. A. Canas, “Modelling seismites with a digital shaking table,” Tectonophysics, vol. 304, no. 4, pp. 369–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Dewey and A. M. C. Şengör, “Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone,” Geological Society of America Bulletin, vol. 90, pp. 84–92, 1979. View at Google Scholar
  21. A. M. C. Şengör, “The North Anatolian transform fault: Its age, offset and tectonic significance,” Journal of the Geological Society, vol. 136, no. 3, pp. 269–282, 1979. View at Publisher · View at Google Scholar · View at Scopus
  22. X. L. Pichon and J. Angelier, “The hellenic arc and trench system: a key to the neotectonic evolution of the eastern mediterranean area,” Tectonophysics, vol. 60, no. 1-2, pp. 1–42, 1979. View at Google Scholar · View at Scopus
  23. G. Seyitoǧlu and B. Scott, “Late Cenozoic crustal extension and basin formation in west Turkey,” Geological Magazine, vol. 128, no. 2, pp. 155–166, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Westaway, “Neogene evolution of the Denizli region of western Turkey,” Journal of Structural Geology, vol. 15, no. 1, pp. 37–53, 1993. View at Google Scholar · View at Scopus
  25. A. Koçyiǧit, “The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey,” Geodinamica Acta, vol. 18, no. 3-4, pp. 167–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kaymakçi, “Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations,” Journal of Asian Earth Sciences, vol. 27, no. 2, pp. 207–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Alçiçek, B. Varol, and M. Özkul, “Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey,” Sedimentary Geology, vol. 202, no. 4, pp. 596–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Seyitoǧlu, “Late Cenozoic tectono-sedimentary development of the Selendi and Uşak-Güre basins: a contribution to the discussion on the development of east-west and north trending basins in western Turkey,” Geological Magazine, vol. 134, no. 2, pp. 163–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yılmaz, Ş. C. Genç, F. Gürer et al., “When did the western Anatolian grabens begin to develop?” in Tectonics and Magmatism in Turkey and the Surrounding Area, E. Bozkurt, J. A. Winchester, and J. D. A. Piper, Eds., vol. 173, pp. 353–384, Geological Society London Special Publications, 2000. View at Google Scholar
  30. E. Bozkurt, “Origin of NE-trending basins in Western Turkey,” Geodinamica Acta, vol. 16, no. 2–6, pp. 61–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Westaway, H. Guillou, S. Yurtmen, T. Demir, S. Scaillet, and G. Rowbotham, “Constraints on the timing and regional conditions at the start of the present phase of crustal extension in western Turkey, from observations in and around the Denizli region,” Geodinamica Acta, vol. 18, no. 3-4, pp. 209–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Purvis and A. Robertson, “A pulsed extension model for the Neogene-Recent E-W-trending Alaşehir Graben and the NE-SW-trending Selendi and Gördes Basins, Western Turkey,” Tectonophysics, vol. 391, no. 1–4, pp. 171–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Purvis and A. Robertson, “Sedimentation of the Neogene-Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey,” Sedimentary Geology, vol. 173, no. 1–4, pp. 373–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Sun, “Denizli-Uşak arasının jeolojisi ve linyit olanakları,” Scientific Report no 92s, Mineral Research Exploration Direct, (MTA) Turkey, 1990. View at Google Scholar
  35. D. R. Lowe, “Water escape structures in coarse grained sediments,” Sedimentology, vol. 22, pp. 157–204, 1975. View at Publisher · View at Google Scholar
  36. P. J. Brenchley and G. Newall, “The significance of contorted bedding in the Upper Ordovician sediments of the Oslo region, Norway,” Journal of Sedimentary Petrology, vol. 47, no. 2, pp. 819–833, 1977. View at Google Scholar
  37. P. C. Mills, “Genesis and diagnostic value of soft-sediment deformation structures—a review,” Sedimentary Geology, vol. 35, no. 2, pp. 83–104, 1983. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Owen, “Load structures: gravity-driven sediment mobilization in the shallow subsurface,” Geological Society Special Publication, vol. 216, pp. 21–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Anketell, J. Cegla, and S. Dzulynski, “On the deformational structures in systems with reversed density gradients,” Annales Societatis Geologorum Poloniae, vol. 40, pp. 3–30, 1970. View at Google Scholar
  40. P. Alfaro, A. Estevez, M. Moretti, and M. J. Soria, “Structures sédimentaires de déformation interprétées comme seismites dans le Quaternaire du bassin du Bas Segura ( Cordillère bétique orientale). Comptes Rendus de l'Academie de Sciences. Serie IIa,” Sciences de la Terre et des Planetes, vol. 328, pp. 17–22, 1999. View at Google Scholar
  41. J. R. L. Allen, Sedimentary Structures: Their Character and Physical Basis, vol. 30 of Developments in Sedimentology, Elsevier, Amsterdam, The Netherlands, 1982.
  42. S. F. Obermeier, “Using liquefaction-induced and other soft-sediment features for paleoseismic analysis,” in Paleoseismology, J. P. McCalpin, Ed., pp. 497–564, Academic Press, Burlington, Mass, USA, 2nd edition, 2009. View at Google Scholar
  43. S. F. Obermaier, J. R. Martin, A. D. Frankel et al., “Liquefaction evidence for one or more strong Holocene earthquakes in the Wabash Valley of southern Indiana and Illinois, with a preliminary estimate of magnitude,” US Geol. Sur. Proff . Pap. 1536, 1993. View at Google Scholar
  44. A. Maltman and A. Bolton, “How sediments become mobilized,” in Subsurface Sediment Mobilization, Special Publication, P. van Rensbergen, R. R. Maltman, and C. K. Morley, Eds., vol. 216, pp. 9–20, The Geological Society, London, UK, 2003. View at Google Scholar
  45. D. D. F. Rossetti, “Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: evidence for palaeoseismicity,” Sedimentology, vol. 46, no. 6, pp. 1065–1081, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Plaziat and M. Ahmamou, “Mechanic processes active in seismites: their identification and tectonic significance in the Pliocene basin of the Sais of Fes and Meknes (Morocco),” Geodinamica Acta, vol. 11, no. 4, pp. 183–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Vanneste, M. Meghraoui, and T. Camelbeeck, “Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system,” Tectonophysics, vol. 309, no. 1–4, pp. 57–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. D. F. Rossetti and A. M. Góes, “Deciphering the sedimentological imprint of paleoseismic events: An example from the Aptian Codo Formation, northern Brazil,” Sedimentary Geology, vol. 135, no. 1–4, pp. 137–156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. J. R. L. Allen, “The possible mechanics of convolute lamination in graded sand beds,” Journal of the Geological Society, vol. 134, no. 1, pp. 19–31, 1977. View at Publisher · View at Google Scholar · View at Scopus
  50. D. R. Lowe and R. D. LoPiccolo, “The characteristics and origins of dish and pillar structures,” Journal of Sedimentary Petrology, vol. 44, pp. 484–501, 1974. View at Google Scholar
  51. R. W. Dalrymple, “Wave-induced liquefaction: a modern example from the Bay of Fundy,” Sedimentology, vol. 26, no. 6, pp. 835–844, 1979. View at Publisher · View at Google Scholar · View at Scopus
  52. J. M. Molina, P. Alfaro, M. Moretti, and J. M. Soria, “Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain),” Terra Nova, vol. 10, no. 3, pp. 145–150, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Alfaro, J. Delgado, A. Estévez, J. Molina, M. Moretti, and J. Soria, “Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain),” International Journal of Earth Sciences, vol. 91, no. 3, pp. 505–513, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Mohindra and T. N. Bagati, “Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya),” Sedimentary Geology, vol. 101, no. 1-2, pp. 69–83, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. A. P. Jones, K. Omoto, and I. Rodsmith, “Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of late pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, Northeastern Japan,” Sedimentology, vol. 47, no. 6, pp. 1211–1226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Topal, Denizli Neojen istifinin stratigrafisi ve tektonik özellikleri [M.S. thesis], Pamukkale University, 2003.
  57. H. B. Seed and I. M. Idriss, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, vol. 97, no. 9, pp. 1249–1273, 1971. View at Google Scholar · View at Scopus
  58. S. Marco and A. Agnon, “Prehistoric earthquake deformations near Massada, dead sea graben,” Geology, vol. 23, no. 8, pp. 695–698, 1995. View at Publisher · View at Google Scholar
  59. S. F. Obermaier, E. C. Pond, S. M. Olson, and R. A. Green, “Paleoliquefaction studies in continental settings,” in Ancient Seismites, F. R. Ettensohn, N. Rast, and C. E. Brett, Eds., vol. 359, pp. 13–27, Geological Society of America Special Papers, Boulder, Colo, USA, 2002. View at Google Scholar
  60. M. Utku, “Etkinlik ve Yığınsal Etkinlik Dönemlerine Göre Denizli Depremlerinin Analizi,” MTA Dergisi, vol. 138, pp. 9–34, 2009. View at Google Scholar
  61. G. Papathanassiou, S. Pavlides, B. Christaras, and K. Pitilakis, “Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean region,” Journal of Geodynamics, vol. 40, no. 2-3, pp. 257–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. A. Castilla and F. A. Audemard, “Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes,” Journal of Seismology, vol. 11, no. 4, pp. 473–487, 2007. View at Publisher · View at Google Scholar · View at Scopus