Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 364352, 11 pages
http://dx.doi.org/10.1155/2014/364352
Research Article

Chaotic Multiquenching Annealing Applied to the Protein Folding Problem

1Universidad Politécnica del Estado de Morelos Boulevard, Cuauhnáhuac 566, 62660 Jiutepec, Mexico
2Universidad Autónoma de Coahuila Boulevard, Venustiano Carranza s/n, 25280 Saltillo, Mexico
3Computational Genomics Research Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca, Mexico
4Instituto Tecnológico y de Estudios Superiores de Monterrey, Autopista del Sol, 62790 Xochitepec, Mexico

Received 15 October 2013; Accepted 19 January 2014; Published 20 March 2014

Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang

Copyright © 2014 Juan Frausto-Solis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Lewin, Genes 8, Prentice Hall, New York, NY, USA, 2004.
  2. C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science, vol. 181, no. 4096, pp. 223–230, 1973. View at Google Scholar · View at Scopus
  3. J. L. Sohl, S. S. Jaswal, and D. A. Agard, “Unfolded conformations of α-lytic protease are more stable than its native state,” Nature, vol. 395, no. 6704, pp. 817–819, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Levinthal, “Are there pathways for protein folding?” Journal of Chemical Physics, vol. 65, pp. 414–445, 1968. View at Google Scholar
  5. J. T. Ngo and J. Marks, “Computational complexity of a problem in molecular structure prediction,” Protein Engineering, vol. 5, no. 4, pp. 313–321, 1992. View at Google Scholar · View at Scopus
  6. M. M. Khimasia and P. V. Coveney, “Protein structure prediction as a hard optimization problem: the genetic algorithm approach,” Molecular Simulation, vol. 19, no. 4, pp. 205–226, 1997. View at Google Scholar · View at Scopus
  7. V. Černý, “Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm,” Journal of Optimization Theory and Applications, vol. 45, no. 1, pp. 41–51, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Google Scholar · View at Scopus
  9. J. Frausto-Solis, E. F. Román, D. Romero, X. Soberon, and E. Liñán-García, “Analytically tuned simulated annealing applied to the protein folding problem,” in Computational Science—ICCS 2007: Proceedings of the 7th International Conference, Beijing, China, May 27–30, 2007, Part II, vol. 4488 of Lecture Notes in Computer Science, no. 2, pp. 370–377, 2007. View at Google Scholar · View at Scopus
  10. J. Frausto-Solis, X. Soberon-Mainero, and E. Liñán-García, “MultiQuenching annealing algorithm for protein folding problem,” in MICAI 2009: Advances in Artificial Intelligence: Proceedings of the 8th Mexican International Conference on Artificial Intelligence, Guanajuato, México, November 9–13, 2009, vol. 5845 of Lecture Notes in Computer Science, pp. 578–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,” Annual Review of Biophysics, vol. 37, pp. 289–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. P. Mukhopadhyay and H. R. Bairagya, “Protein folding: grand challenge of nature,” Journal of Biomolecular Structure and Dynamics, vol. 28, no. 4, pp. 637–638, 2011. View at Google Scholar · View at Scopus
  13. J. M. Yon, “Protein folding: a perspective for biology, medicine and biotechnology,” Brazilian Journal of Medical and Biological Research, vol. 34, no. 4, pp. 419–435, 2001. View at Google Scholar · View at Scopus
  14. C. Lee and M.-H. Yu, “Protein folding and diseases,” Journal of Biochemistry and Molecular Biology, vol. 38, no. 3, pp. 275–280, 2005. View at Google Scholar · View at Scopus
  15. C. A. Ross and M. A. Poirier, “Protein aggregation and neurogenerative disease,” Nature Medicine, vol. 10, supplement, pp. S10–S17, 2004. View at Google Scholar
  16. M. Stefani, “Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world,” Biochimica et Biophysica Acta, vol. 1739, no. 1, pp. 5–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Howlett, “Protein misfolding in disease: cause or response?” Current Medicinal Chemistry—Immunology, Endocrine and Metabolic Agents, vol. 3, no. 4, pp. 371–383, 2003. View at Publisher · View at Google Scholar
  18. J. Winderickx, C. Delay, A. De Vos et al., “Protein folding diseases and neurodegeneration: lessons learned from yeast,” Biochimica et Biophysica Acta, vol. 1783, no. 7, pp. 1381–1395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. K. Chaudhuri and S. Paul, “Protein-misfolding diseases and chaperone-based therapeutic approaches,” FEBS Journal, vol. 273, no. 7, pp. 1331–1349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. O.-L. F. Barona-Gomez and X. Soberon, “Advances and perspectives in protein engineering: from natural history to directed evolution of enzymes,” in Advances in Protein Physical Chemistry, pp. 407–438, 2007. View at Google Scholar
  21. S. Istrail and F. Lam, “Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results,” Communications in Information and Systems, vol. 9, no. 4, pp. 303–346, 2009. View at Publisher · View at Google Scholar
  22. J. W. Ponder and D. A. Case, “Force fields for protein simulations,” Advances in Protein Chemistry, vol. 66, pp. 27–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Némethy, K. D. Gibson, K. A. Palmer et al., “Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides,” The Journal of Physical Chemistry, vol. 96, no. 15, pp. 6472–6484, 1992. View at Google Scholar · View at Scopus
  24. R. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus, “A program for macromolecular energy, minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983. View at Publisher · View at Google Scholar
  25. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, “Energy parameters in polypepltides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids,” The Journal of Physical Chemistry, vol. 79, no. 22, pp. 2361–2381, 1975. View at Google Scholar · View at Scopus
  26. A. D. Mackerell Jr., “Empirical force fields for biological macromolecules: overview and issues,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1584–1604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Skolnick and A. Kolinski, “Computational studies of protein folding,” Computing in Science and Engineering, vol. 3, no. 5, pp. 40–50, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. F. P. Agostini, D. D. O. Soares-Pinto, M. A. Moret, C. Osthoff, and P. G. Pascutti, “Generalized simulated annealing applied to protein folding studies,” Journal of Computational Chemistry, vol. 27, no. 11, pp. 1142–1155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Ceci, A. Mucherino, M. D’Apuzzo et al., “Computational methods for protein fold prediction: an ab-initio topological approach,” in Data Mining in Biomedicine, vol. 7 of Springer Optimization and Its Applications, pp. 391–429, 2007. View at Publisher · View at Google Scholar
  30. L. Ingber, “Simulated annealing: practice versus theory,” Mathematical and Computer Modelling, vol. 18, no. 11, pp. 29–57, 1993. View at Google Scholar · View at Scopus
  31. Y. Li, C. E. M. Strauss, and A. Gorin, “Parallel tempering in rosetta practice,” in Advances in Bioinformatics and Its Applications, vol. 3072, pp. 380–389, 2004. View at Google Scholar
  32. J. Mingjun and T. Huanwen, “Application of chaos in simulated annealing,” Chaos, Solitons and Fractals, vol. 21, no. 4, pp. 933–941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Sanvicente-Sánchez and J. Frausto-Solís, “A method to establish the cooling scheme in simulated annealing like algorithms,” in Computational Science and Its Applications—ICCSA 2004: Proceedings of the International Conference, Assisi, Italy, May 14–17, 2004, Part III, vol. 3045 of Lecture Notes in Computer Science, pp. 755–763, 2004. View at Google Scholar · View at Scopus