Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 369593, 9 pages
http://dx.doi.org/10.1155/2014/369593
Research Article

Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid

1Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Young Researchers and Elite Club, Islamic Azad University, Mashhad Branch, Mashhad, Iran

Received 23 April 2014; Revised 16 July 2014; Accepted 25 July 2014; Published 26 August 2014

Academic Editor: Mohammed Hasnaoui

Copyright © 2014 Hooman Yarmand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Kulkarni, D. K. Das, and G. A. Chukwu, “Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid),” Journal of Nanoscience and Nanotechnology, vol. 6, no. 4, pp. 1150–1154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M.-S. Liu, M.-C. Lin, C. Y. Tsai, and C.-C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” International Journal of Heat and Mass Transfer, vol. 49, no. 17-18, pp. 3028–3033, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. J. Hwang, Y. C. Ahn, H. S. Shin et al., “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Current Applied Physics, vol. 6, no. 6, pp. 1068–1071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” International Journal of Heat and Mass Transfer, vol. 52, no. 21-22, pp. 4675–4682, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. D. Yoo, K. S. Hong, and H. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochimica Acta, vol. 455, no. 1-2, pp. 66–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Jana, A. Salehi-Khojin, and W.-H. Zhong, “Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives,” Thermochimica Acta, vol. 462, no. 1-2, pp. 45–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. U. Kang, S. H. Kim, and J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume,” Experimental Heat Transfer, vol. 19, no. 3, pp. 181–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Trivedi, Thermo-Mechanical Solutions in Electronic Packaging: Component to System Level, 2008.
  9. M. R. Safaei, H. R. Goshayeshi, B. S. Razavi, and M. Goodarzi, “Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods,” Scientific Research and Essays, vol. 6, no. 22, pp. 4826–4838, 2011. View at Google Scholar · View at Scopus
  10. C. Choi, H. S. Yoo, and J. M. Oh, “Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants,” Current Applied Physics, vol. 8, no. 6, pp. 710–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Goodarzi, M. Safaei, K. Vafai et al., “Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model,” International Journal of Thermal Sciences, vol. 75, pp. 204–220, 2014. View at Publisher · View at Google Scholar
  12. H. Peng, G. Ding, W. Jiang, H. Hu, and Y. Gao, “Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube,” International Journal of Refrigeration, vol. 32, no. 7, pp. 1756–1764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, vol. 91, no. 7, pp. 4568–4572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. S. Touloukian and T. Makita, Thermophysical Properties of Matter-The TPRC Data Series, vol. 6 of Specific Heat-Nonmetallic Liquids and Gases, DTIC Document, 1970.
  15. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. M. N. Pantzali, A. A. Mouza, and S. V. Paras, “Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE),” Chemical Engineering Science, vol. 64, no. 14, pp. 3290–3300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Haghshenas Fard, M. N. Esfahany, and M. R. Talaie, “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model,” International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 91–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Allahyari, A. Behzadmehr, and S. M. Hosseini Sarvari, “Conjugate heat transfer of laminar mixed convection of a nanofluid through a horizontal tube with circumferentially non-uniform heating,” International Journal of Thermal Sciences, vol. 50, no. 10, pp. 1963–1972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Aminossadati and B. Ghasemi, “Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid,” Computers and Mathematics with Applications, vol. 61, no. 7, pp. 1739–1753, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. A. H. Mahmoudi, M. Shahi, A. H. Raouf, and A. Ghasemian, “Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 8, pp. 1135–1141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Mansour, R. A. Mohamed, M. M. Abd-Elaziz, and S. E. Ahmed, “Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1504–1512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Shahi, A. H. Mahmoudi, and F. Talebi, “A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder,” International Communications in Heat and Mass Transfer, vol. 38, no. 4, pp. 533–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Izadi, A. Behzadmehr, and D. Jalali-Vahida, “Numerical study of developing laminar forced convection of a nanofluid in an annulus,” International Journal of Thermal Sciences, vol. 48, no. 11, pp. 2119–2129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, “Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,” International Journal of Thermal Sciences, vol. 48, no. 2, pp. 290–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. R. Lotfi, Y. Saboohi, and A. M. Rashidi, “Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches,” International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 74–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Ghaffari, A. Behzadmehr, and H. Ajam, “Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1551–1558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Rostamani, S. F. Hosseinizadeh, M. Gorji, and J. M. Khodadadi, “Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1426–1431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Fotukian and M. Nasr Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube,” International Journal of Heat and Fluid Flow, vol. 31, no. 4, pp. 606–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Vajjha, D. K. Das, and D. P. Kulkarni, “Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids,” International Journal of Heat and Mass Transfer, vol. 53, no. 21-22, pp. 4607–4618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. H. Lienhard and J. Lienhard, A Heat Transfer Textbook, Phlogiston Press, Cambridge, Mass, USA, 2000.
  32. K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics, vol. 1, Engineering Education System, Wichita, Kan, USA, 2000.
  33. V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Applied Thermal Engineering, vol. 29, no. 17-18, pp. 3632–3642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. E. B. Maïga, C. T. Nguyen, N. Galanis, G. Roy, T. Maré, and M. Coqueux, “Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 16, no. 3, pp. 275–292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. F. W. Dittus and L. M. K. Boelter, Heat Transfer for Automobile Radiators of the Tubular Type, vol. 2 of University of California Publications in Engineering, University of California Press, 1930.
  37. A. Bejan, Heat Transfer, John Wiley & Sons, New York, NY, USA, 1993.
  38. V. Gnielinski, “New equations for heat and mass transfer in the turbulent flow in pipes and channels,” NASA STI/Recon Technical Report A 75, 1975. View at Google Scholar