Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 405401, 12 pages
http://dx.doi.org/10.1155/2014/405401
Research Article

Design of Jetty Piles Using Artificial Neural Networks

1Port and Harbor Team, Seoyeong Engineering, Republic of Korea
2Department of Computer Design, School of Engineering and Agriculture, Ulaanbaatar University, Mongolia
3Department of Global Environment, School of Environment, Keimyung University, 203 Osan Hall, Dalgubul-Daero, Dalsegu, Daegu 1095, Republic of Korea

Received 30 April 2014; Accepted 19 July 2014; Published 7 August 2014

Academic Editor: Jie Zhou

Copyright © 2014 Yongjei Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Bae, T. Y. Kim, and S. H. Kim, “The lateral behavior characteristics of group piles in sand ground,” Journal of Korea Society of Civil Engineers C, vol. 20, no. 6, pp. 517–524, 2000. View at Google Scholar
  2. J. S. Bae and S. H. Kim, “The behavior of group piles for pile arrangement under repeated lateral loads,” Journal of Korea Society of Civil Engineers, vol. 23, no. 4, pp. 231–239, 2003. View at Google Scholar
  3. J. Y. Paek, J. Y. Cho, S. S. Jeong, and T. J. Hwang, “Shaft group efficiency of friction pile groups in deep soft clay,” Journal of Korea Society of Civil Engineers, vol. 32, no. 2, pp. 49–60, 2012. View at Google Scholar
  4. R. L. Kondner, “Hyperbolic stress-strain response: cohesive soils,” Journal of the Soil Mechanics and Foundations Division, vol. 89, no. 1, pp. 115–143, 1963. View at Google Scholar
  5. L. C. Reese, W. R. Cox, and F. D. Koop, “Analysis of laterally loaded piles in sand,” in Proceedings of the 6th Offshore Technology Conference, pp. 473–483, Dallas, Tex, USA, 1974.
  6. R. F. Scott, “Analysis of centrifuge pile tests: simulation of pile driving,” Research Report OSAPR Project 13, American Petroleum Institute, 1980. View at Google Scholar
  7. G. Norris, “Theoretically based BEF laterally loaded pile analysis,” in Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, pp. 361–386, Navtes, 1986.
  8. B. T. Kim, S. Kim, and S. H. Lee, “Prediction of lateral behavior of single and group piles using artificial neural networks,” KSCE Journal of Civil Engineering, vol. 5, no. 2, pp. 185–198, 2001. View at Google Scholar
  9. W. T. Chan, Y. K. Chow, and L. F. Liu, “Neural network: an alternative to pile driving formulas,” Computers and Geotechnics, vol. 17, no. 2, pp. 135–156, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. G. W. Willis, C. Yao, R. Zhao, and D. Penumadu, “Stress-strain modeling of sands using artificial neural networks,” Journal of Geotechnical Engineering, vol. 121, no. 5, pp. 429–435, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Lee and J. Lee, “Prediction of pile bearing capacity using artificial neural networks,” Computers and Geotechnics, vol. 18, no. 3, pp. 189–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. C. I. Teh, K. S. Wong, A. T. C. Goh, and S. Jaritngam, “Prediction of pile capacity using neural networks,” Journal of Computing in Civil Engineering, vol. 11, no. 2, pp. 129–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. T. Fushiki, “Estimation of prediction error by using K-fold cross-validation,” Statistics and Computing, vol. 21, no. 2, pp. 137–146, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. R. Hornung, C. Bernau, C. Truntzer, T. Stadler, and A. Boulesteix, “Full versus incomplete cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation,” Tech. Rep. 159, Department of Statistics, University of Munich, 2014. View at Google Scholar
  16. CEN/TC 104, Concrete—Part 1: Specification, performance, production and conformity, EN 206-1, 2000.
  17. CEN/TC 104, “Structural steel part 1: general technical delivery conditions,” Tech. Rep. EN 10025-1, 2004. View at Google Scholar
  18. British Standard Institution, “Maritime works—part 2: Code of practice for the design of quay walls, jetties and dolphins,” BS 6349-2, 2010. View at Google Scholar
  19. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963. View at Google Scholar · View at MathSciNet