Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 409783, 9 pages
Research Article

Kinetics of Mushroom Tyrosinase and Melanogenesis Inhibition by N-Acetyl-pentapeptides

1Department of Chemistry, National Chiayi University, Chiayi 60004, Taiwan
2Department of Applied Cosmetology, Hungkuang University, No. 1018, Sector 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan

Received 25 March 2014; Revised 27 June 2014; Accepted 6 July 2014; Published 22 July 2014

Academic Editor: Gattadahalli M. Anantharamaiah

Copyright © 2014 Ching-Yi Lien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigated the kinetics of 4N-acetyl-pentapeptides, Ac-P1, Ac-P2, Ac-P3, and Ac-P4, regarding inhibition of mushroom tyrosinase activity. The peptides sequences of Ac-P1, Ac-P2, Ac-P3, and Ac-P4 were Ac-RSRFK, Ac-KSRFR, Ac-KSSFR, and Ac-RSRFS, respectively. The 4N-acetyl-pentapeptides were able to reduce the oxidation of L-DOPA by tyrosinase in a dose-dependent manner. Of the 4N-acetyl-pentapeptides, only Ac-P4 exhibited lag time (80 s) at a concentration of 0.5 mg/mL. The tyrosinase inhibitory effects of Ac-P4 (IC50 0.29 mg/mL) were more effective than those of Ac-P1, Ac-P2, and Ac-P3, in which IC50s were 0.75 mg/mL, 0.78 mg/mL, and 0.81 mg/mL, respectively. Kinetic analysis demonstrated that all 4N-acetyl-pentapeptides were mixed-type tyrosinase inhibitors. Furthermore, 0.1 mg/mL of Ac-P4 exhibited significant melanogenesis inhibition on B16F10 melanoma cells and was more effective than kojic acid. The melanogenesis inhibition of Ac-P4 was dose-dependent and did not induce any cytotoxicity on B16F10 melanoma cells.