Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 419308, 10 pages
http://dx.doi.org/10.1155/2014/419308
Research Article

Dynamic Principal Component Analysis with Nonoverlapping Moving Window and Its Applications to Epileptic EEG Classification

1Department of Global Management Studies, Ted Rogers School of Management Studies, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
2Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3

Received 28 August 2013; Accepted 24 October 2013; Published 16 January 2014

Academic Editors: R. Cui and N. Kawahara

Copyright © 2014 Shengkun Xie and Sridhar Krishnan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.