Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 510343, 19 pages
http://dx.doi.org/10.1155/2014/510343
Research Article

The Relationship between Diaspore Characteristics with Phylogeny, Life History Traits, and Their Ecological Adaptation of 150 Species from the Cold Desert of Northwest China

1Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China

Received 22 August 2013; Accepted 4 December 2013; Published 30 January 2014

Academic Editors: F. Bussotti, H. Freitas, and G. Kocsy

Copyright © 2014 Hui-Liang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Kochmer and S. N. Handel, “Constraints and competition in the evolution of flowering phenology,” Ecological Monographs, vol. 56, pp. 303–325, 1986. View at Google Scholar
  2. J. G. Hodgson and J. M. L. Mackey, “The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance,” New Phytologist, vol. 104, no. 3, pp. 497–515, 1986. View at Google Scholar · View at Scopus
  3. S. J. Mazer, “Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms,” Ecological Monographs, vol. 59, no. 2, pp. 153–175, 1989. View at Google Scholar · View at Scopus
  4. J. L. Harper, P. H. Lovell, and K. G. Moore, “Shapes and sizes of seeds,” Annual Review of Ecological Systems, vol. 1, pp. 327–356, 1970. View at Google Scholar
  5. M. Westqby, E. Jurado, and M. Leishman, “Comparative evolutionary ecology of seed size,” Trends in Ecology and Evolution, vol. 7, no. 11, pp. 368–372, 1992. View at Google Scholar · View at Scopus
  6. E. Gordon, “Seed characteristics of plant species from riverine wetlands in Venezuela,” Aquatic Botany, vol. 60, no. 4, pp. 417–431, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Jurado, M. Westoby, and D. Nelson, “Diaspore weight, dispersal, growth form and perenniality of central Australian plants,” Journal of Ecology, vol. 79, no. 3, pp. 811–828, 1991. View at Google Scholar · View at Scopus
  8. A. T. Moles, D. W. Hodson, and C. J. Webb, “Seed size and shape and persistence in the soil in the New Zealand flora,” Oikos, vol. 89, no. 3, pp. 541–545, 2000. View at Google Scholar · View at Scopus
  9. A. T. Moles, D. I. Warton, and M. Westoby, “Seed size and survival in the soil in arid Australia,” Austral Ecology, vol. 28, no. 5, pp. 575–585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Grime, Plant Strategies, Vegetation Processes, and Ecosystem Properties, John Wiley & Sons, Chichester, UK, 2001.
  11. H. G. Baker, “Seed weight in relation to environmental conditions in California,” Ecology, vol. 53, pp. 997–1010, 1972. View at Google Scholar
  12. R. M. Bekker, J. P. Bakker, U. Grandin et al., “Seed size, shape and vertical distribution in the soil: indicators of seed longevity,” Functional Ecology, vol. 12, no. 5, pp. 834–842, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Leishman and M. Westoby, “The role of seed size in seedling establishment in dry soil conditions—experimental evidence from semi-arid species,” Journal of Ecology, vol. 82, no. 2, pp. 249–258, 1994. View at Google Scholar · View at Scopus
  14. Z. M. Liu, X. H. Li, R. P. Li, and Y. M. Luo, “A comparative study on diaspore shape of 70 species found in the sandy land of Horqin,” Acta Prataculturae Sinica, vol. 12, pp. 55–61, 2003. View at Google Scholar
  15. Z. Liu, Q. Yan, X. Li, J. Ma, and X. Ling, “Seed mass and shape, germination and plant abundance in a desertified grassland in northeastern Inner Mongolia, China,” Journal of Arid Environments, vol. 69, no. 2, pp. 198–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. K. Zhong, Q. H. Bao, W. Sun, and H. Y. Zhang, “The influence of mowing on seed amount and composition in soil seed bank of typical steppe. III. Mass and weight of seeds of 120 plant species,” Acta Scientiarum Naturalium Universtatis Neimongal, vol. 32, pp. 280–286, 2001. View at Google Scholar
  17. H. Bu, X. Chen, X. Xu, K. Liu, P. Jia, and G. Du, “Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau,” Plant Ecology, vol. 191, no. 1, pp. 127–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Bu, G. Du, X. Chen, X. Xu, K. Liu, and S. Wen, “Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates,” Plant Ecology, vol. 195, no. 1, pp. 87–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. F. Liu and D. Y. Tan, “Ecological significance of seed mucilage in desert plants,” Chinese Bulletin of Botany, vol. 24, pp. 414–424, 2007. View at Google Scholar
  20. Wikipedia on Ask.com.
  21. L. Y. Zhang and C. D. Chen, “Study on the general characteristics of plant diversity of Gurbantunggut sandy desert,” Acta Ecologica Sinica, vol. 22, pp. 1923–1932, 2002. View at Google Scholar
  22. Y. Zhang, J. Chen, X. Wang, H. Pan, Z. Gu, and B. Pan, “The distribution patterns of biological soil crust in Gurbantunggut desert,” Acta Geographica Sinica, vol. 60, no. 1, pp. 53–60, 2005. View at Google Scholar · View at Scopus
  23. CRFX, Flora Xinjiangensis, Xinjiang Science, Technology and Health Press, Urumqi, China, 1993-2011.
  24. H. L. Liu, Y. Tao, D. Qiu, D. Y. Zhang, and Y. K. Zhang, “Effects of artificial sand-fixing on community characteristics of a rare desert shrub,” Conservation Biology, vol. 27, pp. 1011–1019, 2013. View at Google Scholar
  25. APG, “An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II,” Botanical Journal of the Linnean Society, vol. 141, pp. 339–436, 2003. View at Google Scholar
  26. K. Thompson, S. R. Band, and J. G. Hodgson, “Seed size and shape predict persistence in soil,” Functional Ecology, vol. 7, no. 2, pp. 236–241, 1993. View at Google Scholar · View at Scopus
  27. Y. Gutterman, Survival Strategies of Annual Desert Plants, Springer, Heidelberg, Germany, 2002.
  28. M. R. Leishman, M. Westoby, and E. Jurado, “Correlates of seed size variation: a comparison among five temperate floras,” Journal of Ecology, vol. 83, no. 3, pp. 517–530, 1995. View at Google Scholar · View at Scopus
  29. K. van Oudtshoorn and M. W. van Rooyen, Dispersal Biology of Desert Plants, Springer, Berlin, Germany, 1999.
  30. A. T. Moles, D. D. Ackerly, C. O. Webb et al., “Factors that shape seed mass evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10540–10544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. T. Moles, D. D. Ackerly, C. O. Webb, J. C. Twiddle, J. B. Dickie, and M. Westoby, “A brief history of seed size,” Science, vol. 307, no. 5709, pp. 576–580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. B. Miles and A. E. Dunham, “Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses,” Annual Review of Ecology and Systematics, vol. 24, pp. 587–619, 1993. View at Google Scholar · View at Scopus
  33. D. W. Butler, R. J. Green, D. Lamb, W. J. F. McDonald, and P. I. Forster, “Biogeography of seed-dispersal syndromes, life-forms and seed sizes among woody rain-forest plants in Australia's subtropics,” Journal of Biogeography, vol. 34, no. 10, pp. 1736–1750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Harel, C. Holzapfel, and M. Sternberg, “Seed mass and dormancy of annual plant populations and communities decreases with aridity and rainfall predictability,” Basic and Applied Ecology, vol. 12, no. 8, pp. 674–684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. T. Moles, D. D. Ackerly, J. C. Tweddle et al., “Global patterns in seed size,” Global Ecology and Biogeography, vol. 16, no. 1, pp. 109–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. J. Thomson, A. T. Moles, T. D. Auld, D. Ramp, S. Ren, and R. T. Kingsford, “Chasing the unknown: predicting seed dispersal mechanisms from plant traits,” Journal of Ecology, vol. 98, no. 6, pp. 1310–1318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Lord, M. Westoby, and M. Leishman, “Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation,” American Naturalist, vol. 146, no. 3, pp. 349–364, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Belnap, “Nitrogen fixation in biological soil crusts from southeast Utah, USA,” Biology and Fertility of Soils, vol. 35, no. 2, pp. 128–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Belnap and O. L. Lange, Biological Soil Crust: Structure, Function and Management, Springer, Berlin, Germany, 2003.
  40. F. J. Thomson, A. T. Moles, T. D. Auld, and R. T. Kingsford, “Seed dispersal distance is more strongly correlated with plant height than with seed mass,” Journal of Ecology, vol. 99, no. 6, pp. 1299–1307, 2011. View at Publisher · View at Google Scholar · View at Scopus