Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 516076, 8 pages
http://dx.doi.org/10.1155/2014/516076
Research Article

Phase Diagrams of Smart Copolymers Poly(N-isopropylacrylamide) and Poly(sodium acrylate)

1Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
2Consiglio Nazionale delle Ricerche, Istituto di Chimica e Tecnologia dei Polimeri, c/o Compresorio Olivetti, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
3ATHAS-MP Company, Knoxville, TN 37922, USA

Received 25 January 2014; Revised 17 July 2014; Accepted 17 July 2014; Published 14 August 2014

Academic Editor: Franck Cleymand

Copyright © 2014 Iwona Zarzyka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Coughlan and O. I. Corrigan, “Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems,” International Journal of Pharmaceutics, vol. 313, no. 1-2, pp. 163–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Gu, F. Xia, Y. Wu, X. Qu, Z. Yang, and L. Jiang, “Programmable delivery of hydrophilic drug using dually responsive hydrogel cages,” Journal of Controlled Release, vol. 117, no. 3, pp. 396–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Lue, J.-J. Hsu, C.-H. Chen, and B.-C. Chen, “Thermally on-off switching membranes of poly(N-isopropylacrylamide) immobilized in track-etched polycarbonate films,” Journal of Membrane Science, vol. 301, no. 1-2, pp. 142–150, 2007. View at Publisher · View at Google Scholar
  4. Y. K. Yew, T. Y. Ng, H. Li, and K. Y. Lam, “Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators,” Biomedical Microdevices, vol. 9, no. 4, pp. 487–499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Kuckling, A. Richter, and K. F. Arndt, “Temperature and pH-dependent swelling behavior of poly(N-isopropylacrylamide) copolymer hydrogels and their use in flow control,” Macromolecular Materials and Engineering, vol. 288, no. 2, pp. 144–151, 2003. View at Publisher · View at Google Scholar
  6. I. Y. Galaev and B. Mattiasson, “'Smart' polymers and what they could do in biotechnology and medicine,” Trends in Biotechnology, vol. 17, no. 8, pp. 335–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Strachotová, A. Strachota, M. Uchman et al., “Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response,” Polymer, vol. 48, no. 6, pp. 1471–1482, 2007. View at Publisher · View at Google Scholar
  8. S. Hirotosu, Y. Kirokawa, and T. J. Tanaka, “Volumephase transitions of ionized Nisopropylacrylamide gels,” The Journal of Chemical Physics, vol. 87, pp. 1392–1395, 1987. View at Publisher · View at Google Scholar
  9. E. Matsuo and T. J. Tanaka, “Kinetics of discontinuous volume–phase transition of gels,” The Journal of Chemical Physics, vol. 89, pp. 1695–1697, 1988. View at Publisher · View at Google Scholar
  10. H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Progress in Polymer Science, vol. 17, no. 2, pp. 163–249, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. H. E. Teal, Z. Hu, and D. D. Root, “Native purification of biomolecules with temperature-mediated hydrophobic modulation liquid chromatography,” Analytical Biochemistry, vol. 283, no. 2, pp. 159–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Meunier, C. Pichot, and A. Elaïssari, “Effect of thiol-containing monomer on the preparation of temperature-sensitive hydrogel microspheres,” Colloid and Polymer Science, vol. 284, no. 11, pp. 1287–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Y. Bao and L. S. Zha, “Preparation of poly(Nisopropylacrylamide) microgels using different initiators under various pH values,” Journal of Macromolecular Science A: Pure and Applied Chemistry, vol. 43, no. 11, pp. 1765–1771, 2006. View at Publisher · View at Google Scholar
  14. G. Chen and A. S. Hoffman, “Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH,” Nature, vol. 373, no. 6509, pp. 49–52, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Furyk, Y. Zhang, D. Ortiz-Acosta, P. S. Cremer, and D. E. Bergbreiter, “Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide),” Journal of Polymer Science A: Polymer Chemistry, vol. 44, no. 4, pp. 1492–1501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Schilli, M. Zhang, E. Rizzardo et al., “A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid),” Macromolecules, vol. 37, no. 21, pp. 7861–7866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Singh and L. A. Lyon, “Synthesis of multifunctional nanogels using a protected macromonomer approach,” Colloid and Polymer Science, vol. 286, no. 8-9, pp. 1061–1069, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Tauer, D. Gau, S. Schulze, A. Völkel, and R. Dimova, “Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers,” Colloid and Polymer Science, vol. 287, no. 3, pp. 299–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, and T. Okano, “Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers,” Advances in Colloid and Interface Science, vol. 53, no. 1–3, pp. 119–130, 1998. View at Google Scholar
  20. T. López-León, A. Elaïssari, J. L. Ortega-Vinuesa, and D. Bastos-González, “Hofmeister effects on poly(NIPAM) microgel particles: macroscopic evidence of ion adsorption and changes in water structure,” ChemPhysChem, vol. 8, no. 1, pp. 148–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Lopez-Leon, J. L. Ortega-Vinuesa, D. Bastos-Gonzalez, and A. J. Elaı1ssari, “Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: electrokinetic properties and colloidal stability,” The Journal of Physical Chemistry B, vol. 110, no. 10, pp. 4629–4636, 2006. View at Google Scholar
  22. J. Rika, M. Meewes, R. Nyffenegger, and T. Binkert, “Intermolecular and intramolecular solubilization: Collapse and expansion of a polymer chain in surfactant solutions,” Physical Review Letters, vol. 65, no. 5, pp. 657–660, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Yamazaki, J. M. Song, F. M. Winnik, and J. L. Brash, “Synthesis and solution properties of fluorescently labeled amphiphilic (N-alkylacrylamide) oligomers,” Macromolecules, vol. 31, no. 1, pp. 109–115, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Afroze, E. Nies, and H. Berghmans, “Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks,” Journal of Molecular Structure, vol. 554, no. 1, pp. 55–68, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Van Durme, G. Van Assche, V. Aseyev, J. Raula, H. Tenhu, and B. Van Mele, “Influence of macromolecular architecture on the thermal response rate of amphiphilic copolymers, based on poly(n-isopropylacrylamide) and poly(oxyethylene), in water,” Macromolecules, vol. 40, no. 10, pp. 3765–3772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Moerkerke, R. Koningsveld, H. Berghmans, K. Dušek, and K. Šole, “Phase transitions in swollen networks,” Macromolecules, vol. 28, no. 4, pp. 1103–1107, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Schäfer-Soenen, R. Moerkerke, H. Berghmans, and R. Koningsveld, “Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water-poly(vinyl methyl ether),” Macromolecules, vol. 30, pp. 410–416, 1997. View at Publisher · View at Google Scholar
  28. R. Moerkerke, F. Meeussen, R. Koningsveld et al., “Phase transitions in swollen networks. 3. Swelling behavior of radiation cross-linked poly(vinyl methyl ether) in water,” Macromolecules, vol. 31, no. 7, pp. 2223–2229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Flory, “Thermodynamics of high polymer solutions,” The Journal of Chemical Physics, vol. 9, no. 8, pp. 660–661, 1941. View at Google Scholar · View at Scopus
  30. M. L. Huggins, “Solutions of long chain compounds,” Journal of Chemical Physics, vol. 9, no. 5, p. 440, 1941. View at Google Scholar · View at Scopus
  31. A. J. Staverman and J. H. Van Santen, “The miscibility of water and alkylhalides,” Recueil des Travaux Chimiques des Pays-Bas, vol. 60, pp. 836–841, 1941. View at Publisher · View at Google Scholar
  32. K. Šolc, K. Dušek, R. Koningsveld, and H. Berghmans, “‘Zero’ and “Off-Zero” critical concentrations in solutions of polydisperse polymers with very high molar masses,” Collection of Czechoslovak Chemical Communications, vol. 60, pp. 1661–1688, 1995. View at Publisher · View at Google Scholar
  33. K. van Durme, G. van Assche, and B. van Mele, “Kinetics of demixing and remixing in poly(N-isopropylacrylamide)/water studied by modulated temperature DSC,” Macromolecules, vol. 37, no. 25, pp. 9596–9605, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Hore, B. Hammouda, Y. Li, and H. Cheng, “Co-Nonsolvency of Poly(n-isopropylacrylamide) in Deuterated Water/Ethanol Mixtures,” Macromolecules, vol. 46, pp. 7894–7901, 2013. View at Publisher · View at Google Scholar
  35. W. Xue, S. Champ, and M. B. Huglin, “Observations on some copolymerisations involving N-isopropylacrylamide,” Polymer, vol. 41, no. 20, pp. 7575–7581, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Liu, J. L. Velada, and M. B. Huglin, “Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with sodium acrylate and sodium methacrylate,” Polymer, vol. 40, no. 15, pp. 4299–4306, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Matsuo and T. Tanaka, “Kinetics of discontinuous volume–phase transition of gels,” The Journal of Chemical Physics, vol. 89, no. 3, pp. 1695–1697, 1988. View at Publisher · View at Google Scholar
  38. Patent EP 0693 508 A1, 1996.
  39. C. Ni and X. Zhu, “Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate,” European Polymer Journal, vol. 40, no. 6, pp. 1075–1080, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Beltran, J. P. Baker, H. H. Hooper, H. W. Blanch, and J. M. Prausnitz, “Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels,” Macromolecules, vol. 24, no. 2, pp. 549–551, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kratz, T. Hellweg, and W. Eimer, “Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels,” Colloids and Surfaces A Physicochemical and Engineering Aspects, vol. 170, no. 2-3, pp. 137–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Chen and Y. Hsieh, “Dual temperature- and pH-sensitive hydrogels from interpenetrating networks and copolymerization of N-isopropylacrylamide and sodium acrylate,” Journal of Polymer Science A: Polymer Chemistry, vol. 42, no. 13, pp. 3293–3301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Zarzyka, M. Pyda, and M. L. Di Lorenzo, “Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly(N-isopropylacrylamide) and poly(sodium acrylate) hydrogels,” Colloid and Polymer Science, vol. 292, no. 2, pp. 485–492, 2014. View at Publisher · View at Google Scholar
  44. A. Czerniecka, I. Zarzyka, and M. Pyda, “Vibrational heat capacity of poly(N-isopropylacrylamide),” Analytical Chemistry. In press.
  45. A. Czerniecka, I. Zarzyka, and M. Pyda, Polymer. In press.
  46. M. Pyda, K. van Durme, B. Wunderlich, and B. Van Mele, “Heat capacity of poly(vinyl methyl ether) in the presence and absence of water,” NATAS Notes, vol. 37, pp. 7–13, 2004. View at Google Scholar