Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 537356, 5 pages
http://dx.doi.org/10.1155/2014/537356
Research Article

Placenta-Specific Protein 1 Is Conserved throughout the Placentalia under Purifying Selection

Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 3234 MERF, 375 Newton Road, Iowa City, IA 52242, USA

Received 5 June 2014; Accepted 16 July 2014; Published 7 August 2014

Academic Editor: Haibao Tang

Copyright © 2014 Eric J. Devor. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cocchia, R. Huber, S. Pantano et al., “PLAC1, an Xq26 gene with placenta-specific expression,” Genomics, vol. 68, no. 3, pp. 305–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Fant, H. Barerra-Saldana, W. Dubinsky, B. Poindexter, and R. Bick, “The PLAC1 protein localizes to membranous compartments in the apical region of the syncytiotrophoblast,” Molecular Reproduction and Development, vol. 74, no. 7, pp. 922–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Rawn and J. C. Cross, “The evolution, regulation, and function of placenta-specific genes,” Annual Review of Cell and Developmental Biology, vol. 24, pp. 159–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Fant, A. Farina, R. Nagaraja, and D. Schlessinger, “PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology,” Prenatal Diagnosis, vol. 30, no. 6, pp. 497–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Koslowski, U. Sahin, R. Mitnacht-Kraus, G. Seitz, C. Huber, and Ö. Türeci, “A placenta-specific gene ectopically activated in many human cancers is essentially involved in malignant cell processes,” Cancer Research, vol. 67, no. 19, pp. 9528–9534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Jovine, W. G. Janssen, E. S. Litscher, and P. M. Wassarman, “The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation,” BMC Biochemistry, vol. 7, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Jackman, X. Kong, and M. E. Fant, “Plac1 (placenta-specific 1) is essential for normal placental and embryonic development,” Molecular Reproduction and Development, vol. 79, no. 8, pp. 564–572, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp. 1792–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Castresana, “Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis,” Molecular Biology and Evolution, vol. 17, no. 4, pp. 540–552, 2000. View at Google Scholar · View at Scopus
  10. S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Anisimova and O. Gascuel, “Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative,” Systematic Biology, vol. 55, no. 4, pp. 539–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Chevenet, C. Brun, A. L. Bañuls, B. Jacq, and R. Christen, “TreeDyn: towards dynamic graphics and annotations for analyses of trees,” BMC Bioinformatics, vol. 7, p. 439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dereeper, V. Guignon, G. Blanc et al., “Phylogeny.fr: robust phylogenetic analysis for the non-specialist,” Nucleic Acids Research, vol. 36, pp. W465–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Goldman and Z. Yang, “A codon-based model of nucleotide substitution for protein-coding DNA sequences,” Molecular Biology and Evolution, vol. 11, no. 5, pp. 725–736, 1994. View at Google Scholar · View at Scopus
  15. Z. Yang, “PAML: a program package for phylogenetic analysis by maximum likelihood,” Computer Applications in the Biosciences, vol. 13, no. 5, pp. 555–556, 1997. View at Google Scholar · View at Scopus
  16. M. A. O'Leary, J. I. Bloch, J. J. Flynn et al., “The placental mammal ancestor and the post–K-Pg radiation of placentals,” Science, vol. 339, pp. 662–667, 2013. View at Google Scholar
  17. J. E. Janečka, W. Miller, T. H. Pringle et al., “Molecular and genomic data identify the closest living relative of primates,” Science, vol. 318, no. 5851, pp. 792–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Heringa, “Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment,” Computers and Chemistry, vol. 23, no. 3-4, pp. 341–364, 1999. View at Google Scholar · View at Scopus
  19. V. A. Simossis and J. Heringa, “PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information,” Nucleic Acids Research, vol. 33, no. 2, pp. W289–W294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Yang and J. P. Bielawski, “Statistical methods for detecting molecular adaptation,” Trends in Ecology & Evolution, vol. 15, no. 12, pp. 496–503, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kryazhimskiy and J. B. Plotkin, “The population genetics of dN/dS,” PLoS Genetics, vol. 4, no. 12, Article ID e1000304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kushi, K. Edamura, M. Noguchi, K. Akiyama, Y. Nishi, and H. Sasai, “Generation of mutant mice with large chromosomal deletion by use of irradiated ES cells—analysis of large deletion around hprt locus of ES cell,” Mammalian Genome, vol. 9, no. 4, pp. 269–273, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Chen, X. W. Pang, F. F. Liu et al., “PLAC1/CP1 gene expression and autologous humoral immunity in gastric cancer patients,” Beijing Da Xue Xue Bao, vol. 38, pp. 124–127, 2006 (Chinese). View at Google Scholar
  24. W. A. Silva Jr., S. Gnjatic, E. Ritter et al., “PLAC1, a trophoblast-specific cell surface protein, is expressed in a range of human tumors and elicits spontaneous antibody responses,” Cancer Immunity, vol. 7, article 18, 2007. View at Google Scholar · View at Scopus
  25. X. Dong, J. Peng, Y. Ye et al., “PLAC1 is a tumor-specific antigen capable of eliciting spontaneous antibody responses in human cancer patients,” International Journal of Cancer, vol. 122, no. 9, pp. 2038–2043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Liu, X. Dong, X. Pang et al., “The specific immune response to tumor antigen CP1 and its correlation with improved survival in colon cancer patients,” Gastroenterology, vol. 134, no. 4, pp. 998–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. J. Devor and K. K. Leslie, “The oncoplacental gene placenta-specific protein 1 (PLAC1) is highly expressed in endometrial tumors and cell lines,” Obstetrics and Gynecology International, vol. 2013, Article ID 807849, 7 pages, 2013. View at Publisher · View at Google Scholar
  28. E. J. Devor, H. D. Reyes, D. A. Santillan et al., “Placenta-specific protein 1: a potential key to many oncofetal-placental OB/GYN research questions,” Obstetrics and Gynecology International, vol. 2014, Article ID 678984, 5 pages, 2014. View at Publisher · View at Google Scholar
  29. L. J. Old, “Cancer is a somatic cell pregnancy,” Cancer Immunity, vol. 7, p. 19, 2007. View at Google Scholar · View at Scopus