Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 563038, 9 pages
http://dx.doi.org/10.1155/2014/563038
Research Article

Spatial Characterization of Landscapes through Multifractal Analysis of DEM

1Departamento de Producción Vegetal, Botánica, E.T.S.I.A., UPM, 28040 Madrid, Spain
2Departamento de Producción Vegetal, Fitotecnia, E.T.S.I.A., UPM, 28040 Madrid, Spain
3CEIGRAM, E.T.S.I.A., UPM, 28040 Madrid, Spain
4Departamento de Matemática Aplicada, E.T.S.I.A., UPM, 28040 Madrid, Spain

Received 30 April 2014; Accepted 18 July 2014; Published 6 August 2014

Academic Editor: Antonio Paz González

Copyright © 2014 P. L. Aguado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Wischmeyer and D. D. Smith, Predicting Rainfall Erosion Losses. A Guide to Conservation Planning, US. Dep. of Agriculture Handbook 357, Washington, DC, USA, 1978.
  2. J. Grazzini, A. Turiel, H. Yahia, and I. Herlin, “Edge-preserving smoothing of high-resolution images with a partial multifractal reconstruction scheme,” in Proceedings of the International Society for Photogrammetry and Remote Sensing, pp. 1125–1129, 2004.
  3. J. Grazzini and N. Chrysoulakis, “Extraction of surface properties from a high accuracy DEM using multiscale remote sensing techniques,” in Proceedings of the 19th International Conference: Informatics for Environmental Protection (EnviroInfo '05), J. Hřebiček and J. Ráček, Eds., vol. 1, pp. 352–356, 2005.
  4. J. Wood, “Visualisation of scale dependencias in surface models,” in Proceedings of the 19th International Conference of Cartography (ICA/ACI '99), Ottawa, Canada, 1999.
  5. K. T. Chang, Introduction to Geographic Informaition Systems, McGraw-Hill, New York, NY, USA, 4th edition, 2006.
  6. K. T. Chang and B. W. Tsai, “The effect of DEM resolution on slope and aspect mapping,” Cartography & Geographic Information Systems, vol. 18, no. 1, pp. 69–77, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Schertzer and S. Lovejoy, Non-Linear Variability in Geophysics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  8. J. T. Bjøorke and S. Nilsen, “Wavelets applied to simplification of digital terrain models,” International Journal of Geographical Information Science, vol. 17, no. 7, pp. 601–621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Leduc, Y. T. Prairie, and Y. Bergeron, “Fractal dimension estimates of a fragmented landscape: sources of variability,” Landscape Ecology, vol. 9, no. 4, pp. 279–286, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Gangodagamage, E. Barnes, and E. Foufoula-Georgiou, “Scaling in river corridor widths depicts organization in valley morphology,” Geomorphology, vol. 91, no. 3-4, pp. 198–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Fioravanti, “Multifractals: theory and application to image texture recognition,” in Proceedings of the Joint JRC/ EARSeL Expert Meeting, Fractals in Geosciences and Remote Sensing, Ispra, Italy, 1994.
  12. N. S. Lam and L. de Cola, Fractals in Geography, Prentice Hall, Englewood Cliffs, NJ, USA, 1993.
  13. H. Qiu, N. S. Lam, D. A. Quattrochi, and J. A. Gamon, “Fractal characterization of hyperspectral imagery,” Photogrammetric Engineering and Remote Sensing, vol. 65, no. 1, pp. 63–71, 1999. View at Google Scholar · View at Scopus
  14. L. De Cola, “Fractal analysis of a classified Landsat scene,” Photogrammetric Engineering and Remote Sensing, vol. 55, no. 5, pp. 601–610, 1989. View at Google Scholar · View at Scopus
  15. N. S. Lam, “Description and measurement of Landsat TM images using fractals,” Photogrammetric Engineering & Remote Sensing, vol. 56, no. 2, pp. 187–195, 1990. View at Google Scholar · View at Scopus
  16. S. Lovejoy, A. M. Tarquis, H. Gaonac'h, and D. Schertzer, “Single- and multiscale remote sensing techniques, multifractals, and MODIS-derived vegetation and soil moisture,” Vadose Zone Journal, vol. 7, no. 2, pp. 533–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Turiel and N. Parga, “The multifractal structure of contrast changes in natural images: from sharp edges to textures,” Neural Computation, vol. 12, no. 4, pp. 763–793, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. E. V. Vázquez, R. G. Moreno, J. G. V. Miranda et al., “Assessing soil surface roughness decay during simulated rainfall by multifractal analysis,” Nonlinear Processes in Geophysics, vol. 15, no. 3, pp. 457–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. J. G. Evertsz and B. B. Mandelbrot, “Multifractal measures. Appendix B.,” in Chaos and Fractals: New Frontiers of Science, H. O. Peitgen, H. Jurgens, and D. Saupe, Eds., Springer, New York, NY, USA, 1992. View at Google Scholar
  20. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, Calif, USA, 1983. View at MathSciNet
  21. T. Hirata and M. Imoto, “Multifractal analysis of spatial distribution of microearthquakes in the Kanto region,” Geophysical Journal International, vol. 107, no. 1, pp. 155–162, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. A. N. Kravchenko, C. W. Boast, and D. G. Bullock, “Multifractal analysis of soil spatial variability,” Agronomy Journal, vol. 91, no. 6, pp. 1033–1041, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Tarquis, D. Giménez, A. Saa, M. C. Díaz, and J. M. Gascó, “Scaling and multiscaling of soil pore systems determined by image analysis,” in Scaling Methods in Soil Physics, Y. Pachepsky, D. E. Radcliffe, and H. Magdi Selim, Eds., CRC Press, 2003. View at Google Scholar
  24. A. Sánchez, R. Serna, F. Catalina, and C. N. Afonso, “Multifractal patterns formed by laser irradiation in GeAl thin multilayer films,” Physical Review B, vol. 46, no. 1, pp. 487–490, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Cheng and F. P. Agterberg, “Multifractal modelling and spatial statistics,” Mathematical Geology, vol. 28, no. 1, pp. 1–16, 1996. View at Google Scholar
  26. Q. Cheng, “Multifractality and spatial statistics,” Computers and Geosciences, vol. 25, no. 9, pp. 949–961, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Du and T. S. Yeo, “A novel multifractal estimation method and its application to remote image segmentation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 4, pp. 980–982, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. C. Harvey, H. Gaonac'h, S. Lovejoy, J. Stix, and D. Schertzer, “Multifractal characterization of remotely sensed volcanic features: a case study from Kilauea Volcano, Hawaii,” Fractals, vol. 10, no. 3, pp. 265–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Laferrière and H. Gaonac'h, “Multifractal properties of visible reflectance fields from basaltic volcanoes,” Journal of Geophysical Research B: Solid Earth, vol. 104, no. 3, pp. 5115–5126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Lovejoy, D. Schertzer, Y. Tessier, and H. Gaonach, “Multifractals and resolution-independent remote sensing algorithms: the example of ocean colour,” International Journal of Remote Sensing, vol. 22, no. 7, pp. 1191–1234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Parrinello and R. A. Vaughan, “Multifractal analysis and feature extraction in satellite imagery,” International Journal of Remote Sensing, vol. 23, no. 9, pp. 1799–1825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Schertzer and S. Lovejoy, “Physically based rain and cloud modelling by anisotropic, multiplicative turbulent cascades,” Journal of Geophysical Research, vol. 92, pp. 9693–9714, 1987. View at Google Scholar
  33. F. Schmitt, D. Schertzer, S. Lovejoy, and P. Marchal, “Multifractal analysis of satellite images: towards an automatic segmentation,” in Fractals in Engineering, pp. 103–109, Jules, Arcachon, France, 1997. View at Google Scholar
  34. Y. Tessier, S. Lovejoy, D. Schertzer, D. Lavallee, and B. Kerman, “Universal multifractal indices for the ocean surface at far red wavelengths,” Geophysical Research Letters, vol. 20, no. 12, pp. 1167–1170, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Turiel, J. Isern-Fontanet, E. Garcia-Ladona, and J. Font, “Multifractal method for the instantaneous evaluation of the stream function in geophysical flows,” Physical Review Letters, vol. 95, no. 10, Article ID 104502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Cheng, H. Russell, D. Sharpe, F. Kenny, and P. Qin, “GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges Moraine,” Computers and Geosciences, vol. 27, no. 5, pp. 513–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. J. J. Roering, J. W. Kirchner, and W. E. Dietrich, “Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology,” Water Resources Research, vol. 35, no. 3, pp. 853–870, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Beaulieu and H. Gaonac'h, “Scaling of differentially eroded surfaces in the drainage network of the Ethiopian Plateau,” Remote Sensing of Environment, vol. 82, no. 1, pp. 111–122, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. Cheng, “A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns,” Mathematical Geology, vol. 36, no. 3, pp. 345–360, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  40. H. Gaonac'h, S. Lovejoy, and D. Schertzer, “Resolution dependence of infrared imagery of active thermal features at Kilauea Volcano,” International Journal of Remote Sensing, vol. 24, no. 11, pp. 2323–2344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Lovejoy, S. Pecknold, and D. Schertzer, “Stratified multifractal magnetization and surface geomagnetic fields-I. Spectral analysis and modelling,” Geophysical Journal International, vol. 145, no. 1, pp. 112–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Maître and M. Pinciroli, “Fractal characterization of a hydrological basin using SAR satellite images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 175–181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-S. Gagnon, S. Lovejoy, and D. Schertzer, “Multifractal surfaces and terrestrial topography,” Europhysics Letters, vol. 62, no. 6, pp. 801–807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. S. Gagnon, S. Lovejoy, and D. Schertzer, “Multifractal earth topography,” Nonlinear Processes in Geophysics, vol. 13, no. 5, pp. 541–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. E. Plotnick, R. H. Gardner, W. W. Hargrove, K. Prestegaard, and M. Perlmutter, “Lacunarity analysis: a general technique for the analysis of spatial patterns,” Physical Review E, vol. 53, no. 5, pp. 5461–5468, 1996. View at Google Scholar · View at Scopus
  46. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, “Fractal measures and their singularities: the characterization of strange sets,” Physical Review A, vol. 33, no. 2, pp. 1141–1151, 1986. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  47. J. Feder, Fractals, Plenum Press, New York, NY, USA, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  48. H. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractal New Frontiers of Science (Appendix B. Multifractal Measures), Hamilton Printing, New York, NY, USA, 1992.
  49. A. M. Tarquis, J. C. Losada, R. M. Benito, and F. Borondo, “Multifractal analysis of tori destruction in a molecular Hamiltonian system,” Physical Review E, vol. 65, no. 1, Article ID 016213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Schertzer and S. Lovejoy, “Standard and advanced multifractal techniques in remote sensing,” in Fractas in Geosciences and Remote Sensing and GIS, G. Wilkingo, I. Kanellopoulos, and J. Megier, Eds., pp. 361–394, CRC Press, London, UK, 1994. View at Google Scholar
  51. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A, vol. 316, no. 1–4, pp. 87–114, 2002. View at Publisher · View at Google Scholar · View at Scopus