Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 568043, 8 pages
http://dx.doi.org/10.1155/2014/568043
Research Article

Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

1Key Laboratory of Marine Biology Jiangsu Province, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
2Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
3Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Received 24 May 2014; Accepted 6 July 2014; Published 5 August 2014

Academic Editor: Marian Brestic

Copyright © 2014 Fujia Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs) were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid) by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW), 4,5-dicaffeoylquinic acid (5.633 mg/g DW), and 3,5-dicaffeoylquinic acid (4.900 mg/g DW) were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu). Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW) than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.