Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 581052, 9 pages
http://dx.doi.org/10.1155/2014/581052
Research Article

WDM Network and Multicasting Protocol Strategies

1Computer Engineering Department, Istanbul University, 34010 Istanbul, Turkey
2Computer Engineering Department, Istanbul Commerce University, 34840 Istanbul, Turkey

Received 23 December 2013; Accepted 17 February 2014; Published 12 March 2014

Academic Editors: X. Yang, Z. Yu, and W. Zhang

Copyright © 2014 Pinar Kirci and Abdul Halim Zaim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Wang and Y. Yang, “Multicasting in a class of multicast-capable WDM networks,” Journal of Lightwave Technology, vol. 20, no. 3, pp. 350–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Gargano, A. A. Rescigno, and U. Vaccaro, “Multicasting to groups in optical networks and related combinatorial optimization problems,” in Proceedings of the Parallel and Distributed Processing Symposium, 2003.
  3. A. E. Kamal, “Algorithms for multicast traffic grooming in WDM mesh networks,” IEEE Communications Magazine, vol. 44, no. 11, pp. 96–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Zhang, J. Wei, and C. Qiao, “fundamental issues in ip over wdm multicast,” in Proceedings of the 8th International Conference on Computer Communications and Networks, pp. 84–90, 1999.
  5. N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 1104–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Sankaranarayanan and S. Subramaniam, “Comprehensive performance modeling and analysis of multicasting in optical networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 9, pp. 1399–1413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G.-S. Poo and Y. Zhou, “A new multicast wavelength assignment algorithm in wavelength-routed WDM networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 2–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” Journal of Lightwave Technology, vol. 18, no. 12, pp. 1628–1638, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. He, S.-H. Gary Chan, and D. H. K. Tsang, “Routing and wavelength assignment for WDM multicast networks,” in Proceedings of the IEEE Global Telecommunicatins Conference (GLOBECOM '01), vol. 3, pp. 1536–1540, November 2001. View at Scopus
  10. H.-T. Wu, K.-W. Ke, and S. Huang, “A novel multicast mechanism for optical local area networks,” Computers and Electrical Engineering, vol. 33, no. 2, pp. 94–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. He, S. H. G. Chan, and D. H. K. Tsang, “Multicasting in wdm networks,” IEEE Communications Surveys & Tutorials, vol. 4, pp. 2–20, 2002. View at Google Scholar
  12. S. B. Tridandapani and B. Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: realization and performance of multicast traffic,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 3, pp. 488–500, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Marsan, A. Bianco, E. Leonardi, F. Neri, and A. Nucci, “Multi-hop packet scheduling in WDM/TDM broadcast-and-select optical networks with arbitrary transceivers tuning latencies,” in Proceedings of the Global Telecommunications Conference (GLOBECOM '98), vol. 2, pp. 1105–1111, November 1998. View at Scopus
  14. N. Rammohan and C. Siva Ram Murthy, “On-line multicast routing with QoS constraints in WDM networks with no wavelength converters,” Computer Networks, vol. 50, no. 18, pp. 3666–3685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. G. Ranjitkar, I. M. Suliman, P. Geil, M. M. Kuipers, and R. Prasad, “IP multicast implementation based on the Multicast Extensions to OSPF protocol,” in Proceedings of the IEEE International Conference on Personal Wireless Communications, pp. 484–489, December 2000. View at Scopus
  16. F. Font and D. Mlynek, “Applying clustering algorithms as core selection methods for multiple core trees,” in Proceedings of the IEEE International Conference on Communications, pp. 2030–2035, June 2004. View at Scopus
  17. S. Ueno, T. Kato, and K. Suzuki, “Analysis of Internet multicast traffic performance considering multicast routing protocol,” in Proceedings of the International Conference on Network Protocols, pp. 95–104, November 2000. View at Scopus
  18. R. Wittman and M. Zitterbart, Multicast Communication Protocols and Applications, Morgan Kaufmann, San Francisco, Calif, USA, 2001.
  19. H.-C. Lin and S.-C. Lai, “Simple and effective core placement method for the core based tree multicast routing architecture,” Proceedings of the IEEE International Performance, Computing and Communications Conference, pp. 215–219, 2000. View at Google Scholar · View at Scopus
  20. T. Cevik, “A hybrid OFDM-TDM architecture with decentralized dynamic bandwidth allocation for PONs,” The Scientific World Journal, vol. 2013, Article ID 561984, 9 pages, 2013. View at Publisher · View at Google Scholar
  21. M. Jeong, H. C. Cankaya, and C. Qiao, “On a new multicasting approach in optical burst switched networks,” IEEE Communications Magazine, vol. 40, no. 11, pp. 96–103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Hernández, J. Aracil, V. López, J. F. Palacios, and Ó. G. De Dios, “A resilience-based comparative study between optical burst switching and optical circuit switching technologies,” in Proceedings of the International Conference on Transparent Optical Networks (ICTON '06), vol. 3, pp. 231–234, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. J. Baker, A. Benner, R. Hoare et al., “On the feasibility of optical circuit switching for high performance computing systems,” in Proceedings of the ACM/IEEE Supercomputing Conference, 2005.
  24. P. Zhou and O. Yang, “How practical is optical packet switching in core networks?” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '03), pp. 2709–2713, December 2003. View at Scopus
  25. B. Kantarci and P. Sarisaray, “A survey of time-domain optical burst switched wdm/tdm networks,” in Proceedings of the 3rd Asia Pacific Interational Sysmposium on Information Technology, pp. 149–156.
  26. J. P. Jue and V. M. Vokkarane, Optical Burst Switched Networks, Springer, 2005.
  27. Z. Miao, H. Yamamoto, and T. Takahashi, “Throughput analysis of adaptive flow control protocol for optical packet switching networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '05), vol. 4, pp. 1984–1988, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Jeong, C. Qiao, Y. Xiong, and M. Vandenhoute, “Bandwidth-efficient dynamic tree-shared multicast in optical burst-switched networks,” in Proceedings of the International Conference on Communications (ICC '01), vol. 2, pp. 630–636, June 2001. View at Scopus
  29. M. Jeong, C. Qiao, Y. Xiong, H. C. Cankaya, and M. Vandenhoute, “Tree-shared multicast in optical burst-switched WDM networks,” IEEE Journal of Lightwave Technology, vol. 21, no. 1, pp. 13–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Jeong, Y. Xiong, H. C. Cankaya, M. Vandenhoute, and C. Qiao, “Efficient multicast schemes for optical burst-switched WDM networks,” in Proceedings of the IEEE International Conference on Communications, vol. 3, pp. 1289–1294, June 2000. View at Scopus
  31. M.-T. Chen, S.-S. Tseng, and B. M. T. Lin, “Dynamic multicast routing under delay constraints in WDM networks with heterogeneous light splitting capabilities,” Computer Communications, vol. 29, no. 9, pp. 1492–1503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Network, vol. 17, no. 1, pp. 60–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Stallings, Data and Computer Communications,, Macmillan, NewYork, NY, USA, 1991.
  34. P. Kırcı and A. H. Zaim, “The JIT, JET and horizon signalling protocols on optical burst switches,” Optica Applicata, vol. 36, no. 1, 2006. View at Google Scholar
  35. P. Kırcı and A. H. Zaim, “Performance analysis of signaling protocols on OBS switches,” in Performance, Quality of Service, and Control of Next-Generation Communication and Sensor Networks III, vol. 6011 of Proceedings of the SPIE, pp. 129–137, Boston, Mass, USA, October 2005.