Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 601729, 17 pages
Research Article

A Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm

Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 13 February 2014; Revised 13 July 2014; Accepted 13 July 2014; Published 18 August 2014

Academic Editor: Nirupam Chakraborti

Copyright © 2014 A. S. M. Zahid Kausar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented by microfacets, for which it becomes possible to compute the scattering field in all possible directions. New optimization techniques, like dual quadrant skipping (DQS) and closest object finder (COF), are implemented for fast characterization of wireless communications and making the ray tracing technique more efficient. In conjunction with the ray tracing technique, probability based coverage optimization algorithm is accumulated with the ray tracing technique to make a compact solution for indoor propagation prediction. The proposed technique decreases the ray tracing time by omitting the unnecessary objects for ray tracing using the DQS technique and by decreasing the ray-object intersection time using the COF technique. On the other hand, the coverage optimization algorithm is based on probability theory, which finds out the minimum number of transmitters and their corresponding positions in order to achieve optimal indoor wireless coverage. Both of the space and time complexities of the proposed algorithm surpass the existing algorithms. For the verification of the proposed ray tracing technique and coverage algorithm, detailed simulation results for different scattering factors, different antenna types, and different operating frequencies are presented. Furthermore, the proposed technique is verified by the experimental results.