Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 601845, 10 pages
http://dx.doi.org/10.1155/2014/601845
Research Article

Characterization of Developmental- and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf (Hibiscus cannabinus L.)

1School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
2Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
3Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
4Department of Crop Science, Chungnam National University, Daejeon 305-754, Republic of Korea
5Department of Bioenergy Science & Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
6US Department of Agriculture, Agricultural Research Service, Invasive Insects Biocontrol & Behavior Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA

Received 8 October 2013; Accepted 29 December 2013; Published 26 February 2014

Academic Editors: D. Caparros-Ruiz and H. Seitz

Copyright © 2014 Ritesh Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Boerjan, J. Ralph, and M. Baucher, “Lignin biosynthesis,” Annual Review of Plant Biology, vol. 54, pp. 519–546, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Neutelings, “Lignin variability in plant cell walls: contribution of new models,” Plant Science, vol. 181, no. 4, pp. 379–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, “Lignin biosynthesis and structure,” Plant Physiology, vol. 153, no. 3, pp. 895–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Raes, A. Rohde, J. H. Christensen, Y. Van De Peer, and W. Boerjan, “Genome-wide characterization of the lignification toolbox in Arabidopsis,” Plant Physiology, vol. 133, no. 3, pp. 1051–1071, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. M. S. Moura, C. A. V. Bonine, J. O. F. Viana, M. C. Dornelas, and P. Mazzafera, “Abiotic and biotic stresses and changes in the lignin content and composition in plants,” Journal of Integrative Plant Biology, vol. 52, no. 4, pp. 360–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Xu, D. Zhang, J. Hu et al., “Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom,” BMC Bioinformatics, vol. 10, no. 11, article 1471, 2009. View at Google Scholar · View at Scopus
  7. M. Baucher, C. Halpin, M. Petit-Conil, and W. Boerjan, “Lignin: genetic engineering and impact on pulping,” Critical Reviews in Biochemistry and Molecular Biology, vol. 38, no. 4, pp. 305–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-K. Weng, X. Li, N. D. Bonawitz, and C. Chapple, “Emerging strategies of lignin engineering and degradation for cellulosic biofuel production,” Current Opinion in Biotechnology, vol. 19, no. 2, pp. 166–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Zhou, L. Jackson, G. Shadle et al., “Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17803–17808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Li, X. Cheng, S. Lu, T. Nakatsubo, T. Umezawa, and V. L. Chiang, “Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of aspen,” Plant and Cell Physiology, vol. 46, no. 7, pp. 1073–1082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Barakat, N. B. M. Yassin, J. S. Park, A. Choi, J. Herr, and J. E. Carlson, “Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants,” Plant Science, vol. 181, no. 3, pp. 249–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Larsen, “Cloning and characterization of a ryegrass (Lolium perenne) gene encoding cinnamoyl-CoA reductase (CCR),” Plant Science, vol. 166, no. 3, pp. 569–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Hu, P. Di, J. Chen, Y. Xiao, L. Zhang, and W. Chen, “Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort,” Molecular Biology Reports, vol. 38, no. 3, pp. 2075–2083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Derikvand, J. B. Sierra, K. Ruel et al., “Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1,” Planta, vol. 227, no. 5, pp. 943–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Van Der Rest, S. Danoun, A.-M. Boudet, and S. F. Rochange, “Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools,” Journal of Experimental Botany, vol. 57, no. 6, pp. 1399–1411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Dempsey, Fiber Crops, The University Presses of Gainesville, Gainesville, Fla, USA, 1975.
  17. H. Pande and D. N. Roy, “Delignification kinetics of soda pulping of kenaf,” Journal of Wood Chemistry and Technology, vol. 16, no. 3, pp. 311–325, 1996. View at Google Scholar · View at Scopus
  18. A. Ahmed, G. Scott, M. Akhtar, and G. C. Myers, “Biokraft pulping of kenaf and its bleachability,” in Proceedings of the North American Nonwood Fiber Symposium, pp. 231–238, 1998.
  19. P. Chiaiese, G. Ruotolo, A. Di Matteo, A. De Santo Virzo, A. De Marco, and E. Filippone, “Cloning and expression analysis of kenaf (Hibiscus cannabinus L.) major lignin and cellulose biosynthesis gene sequences and polymer quantification during plant development,” Industrial Crops and Products, vol. 34, no. 1, pp. 1072–1078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kobaisy, M. R. Tellez, C. L. Webber, F. E. Dayan, K. K. Schrader, and D. E. Wedge, “Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition,” Journal of Agricultural and Food Chemistry, vol. 49, no. 8, pp. 3768–3771, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Ghosh, B. S. Choi, M.-J. Jeong et al., “Comparative transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase from Hibiscus cannabinus L., during developmental stages in various tissues and stress regulation,” Plant Omics Journal, vol. 5, no. 2, pp. 184–193, 2012. View at Google Scholar
  22. H. Bae, S.-H. Kim, M. S. Kim et al., “The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses,” Plant Physiology and Biochemistry, vol. 46, no. 2, pp. 174–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kawasaki, H. Koita, T. Nakatsubo et al., “Cinnamoyl-CoA reductase, a key in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 1, pp. 230–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Thévenin, B. Pollet, B. Letarnec et al., “The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana,” Molecular Plant, vol. 4, no. 1, pp. 70–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. S. Chapple, B. W. Shirley, M. Zook, R. Hammerschmidt, and S. C. Somerville, “Secondary metabolism in Arabidopsis,” in Arabidopsis, E. M. Meyerowitz, Ed., pp. 989–1030, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1994. View at Google Scholar
  26. B. Choi, S. Y. Kang, H. J. Bae, H. S. Lim, W. S. Bang, and H. Bae, “Transcriptional analysis of the ρ-coumarate 3-hydroxylase (C3H) gene from Hibiscus cannabinus L. during developmental stages in various tissues and in response to abiotic stresses,” Research Journal of BioTechnology, vol. 7, pp. 23–33, 2012. View at Google Scholar
  27. E. M. Chowdhury, B. S. Choi, S. U. Park, H.-S. Lim, and H. Bae, “Transcriptional analysis of hydroxycinnamoyl transferase (HCT) in various tissues of Hibiscus cannabinus in response to abiotic stress conditions,” Plant Omics Journal, vol. 5, no. 3, pp. 305–313, 2012. View at Google Scholar
  28. M.-J. Jeong, B. S. Choi, D. W. Bae et al., “Differential expression of kenaf phenylalanine ammonia-lyase (PAL) ortholog during developmental stages and in response to abiotic stresses,” Plant Omics Journal, vol. 5, no. 4, pp. 392–399, 2012. View at Google Scholar
  29. J. Kim, B. Choi, S. Natarajan, and H. Bae, “Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses,” Plant Omics Journal, vol. 6, no. 1, pp. 65–72, 2013. View at Google Scholar
  30. C. Hua, L. Linling, C. Shuiyuan et al., “Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: effects on lignification and environmental stresses,” African Journal of Biotechnology, vol. 11, no. 26, pp. 6780–6794, 2012. View at Google Scholar
  31. S. Koutaniemi, T. Warinowski, A. Kärkönen et al., “Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR,” Plant Molecular Biology, vol. 65, no. 3, pp. 311–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Fan, R. Linker, S. Gepstein, E. Tanimoto, R. Yamamoto, and P. M. Neumann, “Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics,” Plant Physiology, vol. 140, no. 2, pp. 603–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-A. So, E. Chung, C.-W. Cho, K.-Y. Kim, and J.-H. Lee, “Molecular cloning and characterization of soybean cinnamoyl CoA reductase induced by abiotic stresses,” Plant Pathology Journal, vol. 26, no. 4, pp. 380–385, 2010. View at Google Scholar
  34. M. Yousefzadi, M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon, “Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis,” Biotechnology Letters, vol. 32, no. 11, pp. 1739–1743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. N. H. Bhuiyan, G. Selvaraj, Y. Wei, and J. King, “Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion,” Journal of Experimental Botany, vol. 60, no. 2, pp. 509–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. L. Escamilla-Treviño, H. Shen, S. R. Uppalapati et al., “Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties,” New Phytologist, vol. 185, no. 1, pp. 143–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Lauvergeat, C. Lacomme, E. Lacombe, E. Lasserre, D. Roby, and J. Grima-Pettenati, “Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria,” Phytochemistry, vol. 57, no. 7, pp. 1187–1195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. G.-T. Huang, S.-L. Ma, L.-P. Bai et al., “Signal transduction during cold, salt, and drought stresses in plants,” Molecular Biology Reports, vol. 39, no. 2, pp. 969–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Mahajan and N. Tuteja, “Cold, salinity and drought stresses: an overview,” Archives of Biochemistry and Biophysics, vol. 444, no. 2, pp. 139–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Seki, T. Umezawa, K. Urano, and K. Shinozaki, “Regulatory metabolic networks in drought stress responses,” Current Opinion in Plant Biology, vol. 10, no. 3, pp. 296–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Bari and J. D. G. Jones, “Role of plant hormones in plant defence responses,” Plant Molecular Biology, vol. 69, no. 4, pp. 473–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Chen, H. Meyermans, B. Burggraeve et al., “Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar,” Plant Physiology, vol. 123, no. 3, pp. 853–867, 2000. View at Google Scholar · View at Scopus
  43. J. Ton, V. Flors, and B. Mauch-Mani, “The multifaceted role of ABA in disease resistance,” Trends in Plant Science, vol. 14, no. 6, pp. 310–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Karuppanapandian, J.-C. Moon, C. Kim, K. Manoharan, and W. Kim, “Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms,” Australian Journal of Crop Science, vol. 5, no. 6, pp. 709–725, 2011. View at Google Scholar · View at Scopus