Input: , condition attributes , decision attribute |
Output: |
Method: |
(1) if or then |
(2) leaf = the distribution of d in the |
(3) return |
(4) end if |
(5) if (all d of are equal) then |
(6) leaf = the distribution of d in the |
(7) return |
(8) end if |
(9) is a copy of C |
(10) false |
(11) while (not do |
(12) att = an attribute randomly selected from C |
(13) if then |
(14) true |
(15) |
(16) end if |
(17) |
(18) if then |
(19) |
(20) end if |
(21) end while |
(22) if (not then |
(23) leaf = the distribution of d in the |
(24) return |
(25) end if |
(26) Decision tree attribute for Root = att |
(27) for (each possible value of att) do |
(28) Add a new tree branch below Root, corresponding to . |
(29) Let be the subset of that have the value |
(30) if then |
(31) leaf = the distribution of d in the |
(32) return |
(33) else |
(34) , , |
(35) end if |
(36) end for |