Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 650393, 7 pages
http://dx.doi.org/10.1155/2014/650393
Research Article

Sequence Variants of ADIPOQ and Association with Type 2 Diabetes Mellitus in Taiwan Chinese Han Population

1Division of Nephrology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
3Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4Asia-Pacific Biotech Developing, Inc., Kaohsiung 80681, Taiwan
5Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan
6Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
7Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
8Center for Molecular Medicine, China Medical University Hospital, Taichung 40477, Taiwan
9Graduate Institute of Cancer Biology, China Medical University, Cancer Center Building 8F, No. 6 Hsueh-Shih Road, Taichung 40477, Taiwan

Received 18 March 2014; Revised 4 June 2014; Accepted 16 June 2014; Published 10 July 2014

Academic Editor: George Panagiotis Chrousos

Copyright © 2014 Ming-Kai Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Rich, “Mapping genes in diabetes. Genetic epidemiological perspective,” Diabetes, vol. 39, no. 11, pp. 1315–1319, 1990. View at Google Scholar · View at Scopus
  3. S. M. Ruchat, C. E. Elks, R. J. Loos et al., “Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies,” Acta Diabetologica, vol. 46, no. 3, pp. 217–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Hotta, T. Funahashi, Y. Arita et al., “Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1595–1599, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Weyer, T. Funahashi, S. Tanaka et al., “Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 1930–1935, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kumada, S. Kihara, S. Sumitsuji et al., “Association of hypoadiponectinemia with coronary artery disease in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 1, pp. 85–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Yu, S. Javorschi, A. L. Hevener et al., “The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects,” Diabetes, vol. 51, no. 10, pp. 2968–2974, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Gao, D. Ding, J. Huang, Y. Qu, Y. Wang, and Q. Huang, “Association of genetic variants in the adiponectin gene with metabolic syndrome: a case-control study and a systematic meta-analysis in the Chinese population,” PLoS ONE, vol. 8, no. 4, Article ID e58412, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hivert, A. K. Manning, J. B. McAteer et al., “Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: The framingham offspring study,” Diabetes, vol. 57, no. 12, pp. 3353–3359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. I. M. Heid, S. A. Wagner, H. Gohlke et al., “Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians,” Diabetes, vol. 55, no. 2, pp. 375–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Menzaghi, T. Ercolino, R. D. Paola et al., “A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome,” Diabetes, vol. 51, no. 7, pp. 2306–2312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ramya, K. A. Ayyappa, S. Ghosh, V. Mohan, and V. Radha, “Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity and serum adiponectin levels in south Indian population,” Gene, vol. 532, no. 2, pp. 253–262, 2013. View at Publisher · View at Google Scholar
  15. K. Hara, P. Boutin, Y. Mori et al., “Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population,” Diabetes, vol. 51, no. 2, pp. 536–540, 2002. View at Google Scholar · View at Scopus
  16. S. Yamaguchi, Y. Yamada, H. Matsuo et al., “Gender differences in the association of gene polymorphisms with type 2 diabetes mellitus,” International Journal of Molecular Medicine, vol. 19, no. 4, pp. 631–637, 2007. View at Google Scholar · View at Scopus
  17. F. Vasseur, N. Helbecque, C. Dina et al., “Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians,” Human Molecular Genetics, vol. 11, no. 21, pp. 2607–2614, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stumvoll, O. Tschritter, A. Fritsche et al., “Association of the T-G polymorphism in adiponectin (Exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 37–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Duval, M. Busson-Leconiat, R. Berger, and R. Hamelin, “Assignment of the TCF-4 gene (TCF7L2) to human chromosome band 10q25.3,” Cytogenetics and Cell Genetics, vol. 88, no. 3-4, pp. 264–265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Shu, N. S. Sauter, F. T. Schulthess, A. V. Matveyenko, J. Oberholzer, and K. Maedler, “Transcription factor 7-like 2 regulates β-cell survival and function in human pancreatic islets,” Diabetes, vol. 57, no. 3, pp. 645–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Liu and J. F. Habener, “Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation,” The Journal of Biological Chemistry, vol. 283, no. 13, pp. 8723–8735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Jin and L. Liu, “The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus,” Molecular Endocrinology, vol. 22, no. 11, pp. 2383–2392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Hayashi, Y. Iwamoto, K. Kaku, H. Hirose, and S. Maeda, “Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population,” Diabetologia, vol. 50, no. 5, pp. 980–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Horikoshi, K. Hara, C. Ito, R. Nagai, P. Froguel, and T. Kadowaki, “A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population,” Diabetologia, vol. 50, no. 4, pp. 747–751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Lehman, K. J. Hunt, R. J. Leach et al., “Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans,” Diabetes, vol. 56, no. 2, pp. 389–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Helgason, S. Pálsson, G. Thorleifsson et al., “Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution,” Nature Genetics, vol. 39, no. 2, pp. 218–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Florez, K. A. Jablonski, N. Bayley et al., “TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program,” The New England Journal of Medicine, vol. 355, no. 3, pp. 241–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Ott, Analysis of Human Genetic Linkage, Johns Hopkins University Press, Baltimore, Md, USA, 1999.
  29. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B: Methodological, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar · View at MathSciNet
  30. F. Faul, E. Erdfelder, A. Buchner, and A.-G. Lang, “Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses,” Behavior Research Methods, vol. 41, no. 4, pp. 1149–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. F. Grant, G. Thorleifsson, I. Reynisdottir et al., “Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes,” Nature Genetics, vol. 38, no. 3, pp. 320–323, 2006. View at Google Scholar
  32. Y. Luo, H. Wang, X. Han et al., “Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population,” Diabetes Research and Clinical Practice, vol. 85, no. 2, pp. 139–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chang, T. Chang, Y. Jiang et al., “Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population,” Diabetes, vol. 56, no. 10, pp. 2631–2637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Cauchi, D. Meyre, C. Dina et al., “Transcription factor TCF7L2 genetic study in the French population: expression in human β-cells and adipose tissue and strong association with type 2 diabetes,” Diabetes, vol. 55, no. 10, pp. 2903–2908, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. E. J. Parra, L. Cameron, L. Simmonds et al., “Association of TCF7L2 polymorphisms with type 2 diabetes in Mexico City,” Clinical Genetics, vol. 71, no. 4, pp. 359–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Zhang, L. Qi, D. J. Hunter et al., “Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men,” Diabetes, vol. 55, no. 9, pp. 2645–2648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Saadi, N. Nagelkerke, S. G. Carruthers et al., “Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects,” Diabetes Research and Clinical Practice, vol. 80, no. 3, pp. 392–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Chakraborty and K. K. Kidd, “The utility of DNA typing in forensic work,” Science, vol. 254, no. 5039, pp. 1735–1739, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. W. S. Yang, W. S. Lee, T. Funahashi et al., “Plasma adiponectin levels in overweight and obese Asians,” Obesity Research, vol. 10, no. 11, pp. 1104–1110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Zadjali, S. AL-Yahyaee, M. O. Hassan, S. Albarwani, and R. A. Bayoumi, “Association of adiponectin promoter variants with traits and clusters of metabolic syndrome in Arabs: family-based study,” Gene, vol. 527, no. 2, pp. 663–669, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. W.-S. Chow, B. M. Y. Cheung, A. W. K. Tso et al., “Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study,” Hypertension, vol. 49, no. 6, pp. 1455–1461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Daimon, T. Oizumi, T. Saitoh et al., “Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study,” Diabetes Care, vol. 26, no. 7, pp. 2015–2020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Olckers, G. W. Towers, A. van der Merwe, P. E. H. Schwarz, P. Rheeder, and A. E. Schutte, “Protective effect against type 2 diabetes mellitus identified within the ACDC gene in a black South African diabetic cohort,” Metabolism: Clinical and Experimental, vol. 56, no. 5, pp. 587–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Ukkola, M. Santaniemi, T. Rankinen et al., “Adiponectin polymorphisms, adiposity and insulin metabolism: HERITAGE family study and Oulu diabetic study,” Annals of Medicine, vol. 37, no. 2, pp. 141–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. W.-L. Liao, C.-C. Chen, C.-T. Chang et al., “Gene polymorphisms of adiponectin and leptin receptor are associated with early onset of type 2 diabetes mellitus in the Taiwanese population,” International Journal of Obesity, vol. 36, no. 6, pp. 790–796, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Li, Y. Yang, L. Shi, X. Li, Y. Zhang, and Y. Yao, “The association studies of ADIPOQ with type 2 diabetes mellitus in Chinese populations,” Diabetes/Metabolism Research and Reviews, vol. 28, no. 7, pp. 551–559, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Yang, Y. Yang, C. Chen et al., “Adiponectin SNP276 is associated with obesity, the metabolic syndrome, and diabetes in the elderly,” American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 509–513, 2007. View at Google Scholar · View at Scopus
  48. N. X. Wang, D. M. Liu, and M. De, “The association of adiponectin gene polymorphism with insulin resistance and type 2 diabetes mellitus,” Journal of Tianjin Medical University, vol. 15, pp. 190–193, 2009. View at Google Scholar
  49. J. M. Hao, Z. H. Dian, and J. X. Liu, “Correlation between single nucleotide polymorphism of adiponectin gene and type 2 diabete in Han population of Hainan,” Hainan Medical Journal, vol. 20, pp. 1–3, 2009. View at Google Scholar
  50. Y. Wang, D. Zhang, Y. Liu et al., “Association study of the single nucleotide polymorphisms in adiponectin-associated genes with type 2 diabetes in Han Chinese,” Journal of Genetics and Genomics, vol. 36, no. 7, pp. 417–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Yang and L. Chuang, “Human genetics of adiponectin in the metabolic syndrome,” Journal of Molecular Medicine, vol. 84, no. 2, pp. 112–121, 2006. View at Publisher · View at Google Scholar · View at Scopus