Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 681707, 5 pages
http://dx.doi.org/10.1155/2014/681707
Research Article

A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation

1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2Science and Technology on Space Physics Laboratory, Beijing 100076, China
3School of Computer Science, National University of Defense Technology, Changsha 410073, China
4Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK

Received 21 December 2013; Accepted 20 February 2014; Published 19 March 2014

Academic Editors: A. Atangana, S. C. O. Noutchie, and A. Secer

Copyright © 2014 Chunye Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kilicman and Z. A. A. A. Zhour, “Kronecker operational matrices for fractional calculus and some applications,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 250–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Zhai, X. Feng, and Z. Weng, “New high-order compact adi algorithms for 3D nonlinear time-fractional convection-diffusion equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 246025, 11 pages, 2013. View at Publisher · View at Google Scholar
  3. A. Atangana and E. Alabaraoye, “Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations,” Advances in Difference Equations, vol. 2013, no. 1, article 94, pp. 1–14, 2013. View at Publisher · View at Google Scholar
  4. Q. Liu, F. Liu, I. Turner, and V. Anh, “Numerical simulation for the 3D seep age flow with fractional derivatives in porous media,” IMA Journal of Applied Mathematics, vol. 74, no. 2, pp. 201–229, 2009. View at Publisher · View at Google Scholar
  5. P. Zhuang, F. Liu, V. Anh, and I. Turner, “Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process,” IMA Journal of Applied Mathematics, vol. 74, no. 5, pp. 645–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Secer, “Approximate analytic solution of fractional heat-like and wave-like equations with variable coefficients using the differential transforms method,” Advances in Difference Equations, vol. 2012, no. 1, article 198, pp. 1–10, 2012. View at Publisher · View at Google Scholar
  7. A. Atangana and A. Secer, “The time-fractional coupled-Korteweg-de-Vries equations,” Abstract and Applied Analysis, vol. 2013, Article ID 947986, 8 pages, 2013. View at Publisher · View at Google Scholar
  8. J. Chen, F. Liu, I. Turner, and V. Anh, “The fundamental and numerical solutions of the Riesz space-fractional reaction-dispersion equation,” The ANZIAM Journal, vol. 50, no. 1, pp. 45–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zhang, J. Liu, L. Wei, and C. Ma, “Finite element method for Grwünwald-Letnikov time-fractional partial differential equation,” Applicable Analysis, vol. 92, no. 10, pp. 1–12, 2013. View at Publisher · View at Google Scholar
  10. S. S. Ray, “A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 544–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Li, F. Zeng, and F. Liu, “Spectral approximations to the fractional integral and derivative,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 383–406, 2012. View at Publisher · View at Google Scholar
  12. J. Chen, “An implicit approximation for the Caputo fractional reaction dispersion equation,” Journal of Xiamen University, vol. 46, no. 5, pp. 616–619, 2007 (Chinese). View at Google Scholar
  13. H. A. Schwarz, Gesammelte Mathematische Abhandlungen, AMS Bookstore, 1972.
  14. J. Xu and J. Zou, “Some nonoverlapping domain decomposition methods,” SIAM Review, vol. 40, no. 4, pp. 857–914, 1998. View at Google Scholar · View at Scopus
  15. T. F. Chan and T. P. Mathew, “Domain decomposition algorithms,” Acta Numerica, vol. 3, pp. 61–143, 1994. View at Publisher · View at Google Scholar
  16. C. Gong, W. Bao, G. Tang, B. Yang, and J. Liu, “An efficient parallel solution for Caputo fractional reaction-diffusion equation,” The Journal of Supercomputing, 2014. View at Publisher · View at Google Scholar
  17. C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” Journal of Computational Physics, vol. 230, no. 15, pp. 6010–6022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Gong, J. Liu, H. Huang, and Z. Gong, “Particle transport with unstructured grid on GPU,” Computer Physics Communications, vol. 183, no. 3, pp. 588–593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Cao, Z. Mo, X. Liu, X. Xu, and A. Zhang, “Parallel implementation of fast multipole method based on JASMIN,” Science China Information Sciences, vol. 54, no. 4, pp. 757–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Gong, W. Bao, and G. Tang, “A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method,” Fractional Calculus and Applied Analysis, vol. 16, no. 3, pp. 654–669, 2013. View at Google Scholar
  21. C. Gong, W. Bao, G. Tang, Y. Jiang, and J. Liu, “A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method,” The Scientific World Journal, vol. 2014, Article ID 219580, 8 pages, 2014. View at Publisher · View at Google Scholar
  22. C. Gong, W. Bao, G. Tang, Y. Jiang, and J. Liu, “A domain decomposition method for time fractional reaction-diffusion equation,” The Scientific World Journal. In press.
  23. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999.
  24. X. Cai, “Overlapping domain decomposition methods,” in Advanced Topics in Computational Partial Differential Equations, vol. 33 of Lecture Notes in Computational Science and Engineering, pp. 57–95, Springer, Berlin, Germany, 2003. View at Publisher · View at Google Scholar
  25. T. P. A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, vol. 61 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, Germany, 2008.
  26. X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The TianHe-1A supercomputer: its hardware and software,” Journal of Computer Science and Technology, vol. 26, no. 3, pp. 344–351, 2011. View at Publisher · View at Google Scholar · View at Scopus