Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 682963, 12 pages
http://dx.doi.org/10.1155/2014/682963
Research Article

Design and Development of Turbodrill Blade Used in Crystallized Section

Key Laboratory on Deep Geo-Drilling Technology of the Ministry of Land and Resources, China University of Geosciences, Beijing 100083, China

Received 2 March 2014; Revised 9 August 2014; Accepted 10 August 2014; Published 2 September 2014

Academic Editor: Fabrizio Scala

Copyright © 2014 Wang Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U.S. Department of Energy, “Former USSR R&D on advanced downhole drilling motors,” Russian Drilling Technology Studies (CD-ROM) E 1.111:R92, 1997. View at Google Scholar
  2. F. V. Delucia, “Benefits, limitations, and applicability of steerable system drilling,” in Proceedings of the SPE/IADC Drilling Conference, SPE-18656-MS, New Orleans, La, USA, February 1989. View at Publisher · View at Google Scholar
  3. A. Mokaramian, V. Rasouli, and G. Cavanough, “Adapting oil and gas downhole motors for deep mineral exploration drilling,” in Proceedings of the 6th International Seminar on Deep and High Stress Mining, Perth, Australia, 2012.
  4. L. Guibin, L. Yongjing, and L. Yaoquan, “Bit selection and application for granite rock of Well Pugu-1,” Oil Drilling & Production Technology, vol. 33, no. 6, pp. 106–109, 2011. View at Google Scholar
  5. X. Baoping, Z. Jinchang, and Z. Yangsheng, “Key technologies of hot dry rock drilling during construction,” Chinese Journal of Rock Mechanics and Engineering, vol. 30, pp. 2234–2243, 2011. View at Google Scholar
  6. Y. Wang, L. Bao-lin, Z. Hai-yan et al., “Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress,” The Scientific World Journal, vol. 2014, Article ID 650683, 11 pages, 2014. View at Publisher · View at Google Scholar
  7. D. Calnan, R. Seale, and T. Beaton, “Identifying applications for turbodrilling and evaluating historical performances in North America,” Journal of Canadian Petroleum Technology, vol. 46, no. 6, pp. 34–39, 2007. View at Google Scholar · View at Scopus
  8. T. Chunfei, W. Jiachang, and Z. Weijian, “Test of reduction turbodrill TDR1-127 at ultra-deep wells in Tahe oilfield,” Oil Drilling & Production Technology, vol. 32, pp. 93–96, 2010. View at Google Scholar
  9. X. Zhang and J. Feng, “Research on the effect of fluid media on the mechanical property of high speed turbo-drill,” China Pertroleum Machinery, vol. 40, pp. 38–42, 2012. View at Google Scholar
  10. A. Mokaramiani, V. Rasouli, and G. Cavanough, “CFD simulations of turbodrill performance with asymmetric stator and rotor blades congiguration,” in Proceedings of the 9th International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, December 2012.
  11. W. C. Maurer, Advanced Geothermal Turbodrill, Technology International, US Department of Energy, National Energy Technology Laboratory (NETL), 2000.
  12. R. Radtke, D. Glowka, M. M. Rai, T. Beaton, and R. Seale, High-Power Turbodrill and Drill Bit for Drilling with Coiled Tubing, Technology International, US Department of Energy, National Energy Technology Laboratory (NETL), 2011.
  13. R. Seale, T. Beaton, and G. Flint, “Optimizing turbodrill designs for coiled tubing applications,” in Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 2004.
  14. C. Grigor, D. Conroy, and M. Henderson, “Expanding the use of turbodrills in coiled tubing and workover applications,” in Proceedings of the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, SPE-113721-MS, The Woodlands, Tex, USA, April 2008. View at Publisher · View at Google Scholar
  15. F. Jianhong, S. Kexiong, and Z. Zhi, “Analysis on three-dimensional numerical simulation of turbine flow characteristics,” Energy Procedia, vol. 16, pp. 1259–1263, 2012. View at Publisher · View at Google Scholar
  16. A. Mokaramian, V. Rasouli, and G. Cavanhough, “A feasibility study on adopting coiled tubing drilling technology for deep hard rock mining exploration,” in Proceedings of the 6th International Seminar on Deep and High Stress Mining, Perth, Australia, 2012.
  17. A. Mokaramian, V. Rasouli, and G. Cavanough, “Fluid flow investigation through small turbodrill for optimal performance,” Mechanical Engineering Research, vol. 3, no. 1, pp. 1–24, 2013. View at Publisher · View at Google Scholar
  18. J. R. Bourgoyne, A . T. Millheim, K. K. Chenevert, M. E. Chenevert, and F. S. Young, Applied Drilling Engineering, vol. 2 of SPE Textbook Series, Society of Petroleum Engineers, Richardson, Tex, USA, 1991.
  19. M. Keerthana and P. Harikrishna, “Application of CFD for assessment of galloping stability of rectangular and H-sections,” Journal of Scientific and Industrial Research, vol. 72, no. 7, pp. 419–427, 2013. View at Google Scholar · View at Scopus
  20. S. N. Singh, V. Seshadri, R. K. Singh, and T. Mishra, “Flow characteristics of an annular gas turbine combustor model for reacting flows using CFD,” Journal of Scientific and Industrial Research, vol. 65, no. 11, pp. 921–934, 2006. View at Google Scholar · View at Scopus
  21. Q. Zhang, M. Li, Z. Cheng et al., “Development and application of test bed for large torque screw drill,” China Petroleum Machinery, vol. 35, no. 7, pp. 31–34, 2007. View at Google Scholar