Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 706074, 6 pages
http://dx.doi.org/10.1155/2014/706074
Research Article

Changes in Iron Metabolism and Oxidative Status in STZ-Induced Diabetic Rats Treated with Bis(maltolato) Oxovanadium (IV) as an Antidiabetic Agent

1Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
2Department of Cellular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
3Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain
4Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain

Received 18 August 2013; Accepted 8 October 2013; Published 5 January 2014

Academic Editors: A. Chicco and T. Strand

Copyright © 2014 Cristina Sánchez-González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanadium was supplied in drinking water as bis(maltolato) oxovanadium (IV) (BMOV). The experiment had a duration of five weeks. Iron was measured in food, faeces, urine, serum, muscle, kidney, liver, spleen, and femur. Superoxide dismutase, catalase, NAD(P)H: quinone-oxidoreductase-1 (NQO1) activity, and protein carbonyl group levels in the liver were determined. In the diabetic rats, higher levels of Fe absorbed, Fe content in kidney, muscle, and femur, and NQO1 activity were recorded, together with decreased catalase activity, in comparison with the control rats. In the rats treated with 3 mgV/day, there was a significant decrease in fasting glycaemia, Fe content in the liver, spleen, and heart, catalase activity, and levels of protein carbonyl groups in comparison with the diabetic group. In conclusion BMOV was a dose-dependent hypoglycaemic agent. Treatment with 3 mgV/day provoked increased Fe deposits in the tissues, which promoted a protein oxidative damage in the liver.