Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 706074, 6 pages
http://dx.doi.org/10.1155/2014/706074
Research Article

Changes in Iron Metabolism and Oxidative Status in STZ-Induced Diabetic Rats Treated with Bis(maltolato) Oxovanadium (IV) as an Antidiabetic Agent

1Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
2Department of Cellular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
3Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain
4Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain

Received 18 August 2013; Accepted 8 October 2013; Published 5 January 2014

Academic Editors: A. Chicco and T. Strand

Copyright © 2014 Cristina Sánchez-González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Nielsen, “Other trace elements,” in Present Knowledge in Nutrition, E. E. Ziegler and L. J. Filder, Eds., pp. 364–370, ILSI Press, Washington, DC, USA, 7th edition, 1996. View at Google Scholar
  2. K. De Cremer, M. Van Hulle, C. Chéry et al., “Fractionation of vanadium complexes in serum, packed cells and tissues of Wistar rats by means of gel filtration and anion-exchange chromatography,” Journal of Biological Inorganic Chemistry, vol. 7, no. 7-8, pp. 884–890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. B. D. Liboiron, K. H. Thompson, G. R. Hanson, E. Lam, N. Aebischer, and C. Orvig, “New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals,” Journal of the American Chemical Society, vol. 127, no. 14, pp. 5104–5115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Iglesias-González, C. Sánchez-González, M. Montes-Bayón, J. Llopis-González, and A. Sanz-Medel, “Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques,” Analytical and Bioanalytical Chemistry, vol. 402, no. 1, pp. 277–285, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Orvig, K. H. Thompson, M. Battell, and J. H. McNeill, “Vanadium compounds as insulin mimics,” Metal ions in Biological Systems, vol. 31, pp. 575–594, 1995. View at Google Scholar · View at Scopus
  6. K. H. Thompson and C. Orvig, “Vanadium in diabetes: 100 years from Phase 0 to Phase I,” Journal of Inorganic Biochemistry, vol. 100, no. 12, pp. 1925–1935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Kawabe, Y. Yoshikawa, Y. Adachi, and H. Sakurai, “Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes,” Life Sciences, vol. 78, no. 24, pp. 2860–2866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. H. Thompson, J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill, and C. Orvig, “Vanadium treatment of type 2 diabetes: a view to the future,” Journal of Inorganic Biochemistry, vol. 103, no. 4, pp. 554–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Barceloux, “Vanadium,” Journal of Toxicology, vol. 37, no. 2, pp. 265–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Yanardag and S. Tunali, “Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats,” Molecular and Cellular Biochemistry, vol. 286, no. 1-2, pp. 153–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Oster, J. M. Llobet, J. L. Domingo, J. B. German, and C. L. Keen, “Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects,” Toxicology, vol. 83, no. 1–3, pp. 115–130, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Sanchez-Gonzalez, C. Bermudez-Peña, F. Guerrero-Romero et al., “Effect of bis(maltolato)oxovanadium (IV) (BMOV) on Se nutritional status in diabetic STZ rats,” British Journal of Nutrition, vol. 108, pp. 893–899, 2012. View at Google Scholar
  13. D. T. Ward, K. Hamilton, R. Burnand, C. P. Smith, D. R. Tomlinson, and D. Riccardi, “Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney,” Biochimica et Biophysica Acta, vol. 1740, no. 1, pp. 79–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Cai, S. Chen, T. Evans, M. G. Cherian, and S. Chakrabarti, “Endothelial-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats,” International Journal of Experimental Diabetes Research, vol. 3, no. 3, pp. 193–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Dogukan, N. Sahin, M. Tuzcu et al., “The effects of chromium histidinate on mineral status of serum and tissue in fat-fed and streptozotocin-treated type II diabetic rats,” Biological Trace Element Research, vol. 131, no. 2, pp. 124–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. American Diabetes Association, “Standards of medical care in diabetes—2013,” Diabetes Care, vol. 36, supplement 1, pp. S11–S66, 2013. View at Google Scholar
  17. J. B. Majithiya, R. Balaraman, R. Giridhar, and M. R. Yadav, “Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 3, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tas, E. Sarandol, S. Z. Ayvalik, Z. Serdar, and M. Dirican, “Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems,” Archives of Medical Research, vol. 38, no. 3, pp. 276–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. McNeill, V. G. Yuen, H. R. Hoveyda, and C. Orvig, “Bis(maltolato)oxovanadium(IV) is a potent insulin mimic,” Journal of Medicinal Chemistry, vol. 35, no. 8, pp. 1489–1491, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  21. C. Trenzado, M. C. Hidalgo, M. García-Gallego et al., “Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study,” Aquaculture, vol. 254, no. 1–4, pp. 758–767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Aebi, “[13] Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Sturve, E. Stephensen, and L. Förlin, “Effects of redox cycling compounds on DT diaphorase activity in the liver of rainbow trout (Oncorhynchus mykiss),” Comparative Hepatology, vol. 4, article 4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  25. EFSA, “Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of vanadium (Request no EFSA-Q-2003-018),” The EFSA Journal, vol. 33, pp. 1–22, 2004, http://www.efsa.eu.int/. View at Google Scholar
  26. A. L. Lau and M. L. Failla, “Urinary excretion of zinc, copper and iron in the streptozotocin-diabetic rat,” Journal of Nutrition, vol. 114, no. 1, pp. 224–233, 1984. View at Google Scholar · View at Scopus
  27. J. Wilsey, M. K. Matheny, and P. J. Scarpace, “Oral vanadium enhances the catabolic effects of central leptin in young adult rats,” Endocrinology, vol. 147, no. 1, pp. 493–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. I. M. Liu, T. C. Chi, and J. T. Cheng, “Decrease of hypothalamic neuropeptide Y gene expression by vanadyl sulfate in streptozotocin-induced diabetic rats,” Hormone and Metabolic Research, vol. 33, no. 2, pp. 96–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Foppolia, F. Marcob, C. Blarzinoc, M. Perluigib, C. Cinib, and R. Cocciab, “Biological response of human diploid keratinocytes to quinone producing compounds: role of NAD(P)H:quinone oxidoreductase 1,” The International Journal of Biochemistry & Cell Biology, vol. 37, pp. 852–863, 2005. View at Google Scholar
  30. Y. Y. Jang, J. H. Song, Y. K. Shin, E. S. Han, and C. S. Lee, “Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats,” Pharmacological Research, vol. 42, no. 4, pp. 361–371, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Sadi and T. Güray, “Gene expressions of Mn-SOD and GPx-1 in streptozotocin-induced diabetes: effect of antioxidants,” Molecular and Cellular Biochemistry, vol. 327, no. 1-2, pp. 127–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Abou-Seif and A.-A. Youssef, “Evaluation of some biochemical changes in diabetic patients,” Clinica Chimica Acta, vol. 346, no. 2, pp. 161–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Abdelhamid, A. Anwar-Mohamed, M. M. Elmazar, and A. O. S. El-Kadi, “Modulation of NAD(P)H: Quinone oxidoreductase by vanadium in human hepatoma HepG2 cells,” Toxicology in Vitro, vol. 24, no. 6, pp. 1554–1561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Sanchez-Gonzalez, C. Bermudez-Peña, C. E. Trenzado et al., “Changes in the antioxidant defence and in selenium concentration in tissues of vanadium exposed rats,” Metallomics, vol. 4, pp. 814–819, 2012. View at Google Scholar