Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 709736, 9 pages
http://dx.doi.org/10.1155/2014/709736
Review Article

Molecular Alterations of PI3K/Akt/mTOR Pathway: A Therapeutic Target in Endometrial Cancer

1Second Department of Obstetrics and Gynecology, University of Athens Medical School, Aretaieion University Hospital, 76 Vas. Sofias Avenue, 11527 Athens, Greece
2Department of Gynecology and Obstetrics, The Johns Hopkins Hospital School of Medicine, Baltimore, MD 21287, USA

Received 30 August 2013; Accepted 9 October 2013; Published 12 January 2014

Academic Editors: D. H. Dinh, E. K. Han, D. G. Mutch, and E. O. Pettersen

Copyright © 2014 Athanasia Pavlidou and Nikos F. Vlahos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Cancer Facts and Figures, American Cancer Society, 2013.
  3. A. Doll, M. Abal, M. Rigau et al., “Novel molecular profiles of endometrial cancer-new light through old windows,” Journal of Steroid Biochemistry and Molecular Biology, vol. 108, no. 3-5, pp. 221–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. V. Bokhman, “Two pathogenetic types of endometrial carcinoma,” Gynecologic Oncology, vol. 15, no. 1, pp. 10–17, 1983. View at Google Scholar · View at Scopus
  5. N. Potischman, R. N. Hoover, L. A. Brinton et al., “Case-control study of endogenous steroid hormones and endometrial cancer,” Journal of the National Cancer Institute, vol. 88, no. 16, pp. 1127–1135, 1996. View at Google Scholar · View at Scopus
  6. S. F. Lax, B. Kendall, H. Tashiro, R. J. Slebos, and L. Hedrick, “The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways,” Cancer, vol. 88, no. 4, pp. 814–824, 2000. View at Google Scholar
  7. F.-S. Liu, “Molecular carcinogenesis of endometrial cancer,” Taiwanese Journal of Obstetrics and Gynecology, vol. 46, no. 1, pp. 26–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. Oehler, A. Brand, and G. V. Wain, “Molecular genetics and endometrial cancer,” Journal of the British Menopause Society, vol. 9, no. 1, pp. 27–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu, and G. B. Mills, “Exploiting the PI3K/AKT pathway for cancer drug discovery,” Nature Reviews Drug Discovery, vol. 4, no. 12, pp. 988–1004, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Vivanco and C. L. Sawyers, “The phosphatidylinositol 3-kinase-AKT pathway in human cancer,” Nature Reviews Cancer, vol. 2, no. 7, pp. 489–501, 2002. View at Google Scholar · View at Scopus
  11. A. Bellacosa, C. C. Kumar, A. D. Cristofano, and J. R. Testa, “Activation of AKT kinases in cancer: implications for therapeutic targeting,” Advances in Cancer Research, vol. 94, no. 1, pp. 29–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. D. Manning and L. C. Cantley, “AKT/PKB signaling: navigating downstream,” Cell, vol. 129, no. 7, pp. 1261–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Engelman, J. Luo, and L. C. Cantley, “The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism,” Nature Reviews Genetics, vol. 7, no. 8, pp. 606–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Hecht and G. L. Mutter, “Molecular and pathologic aspects of endometrial carcinogenesis,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4783–4791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. W. Cheung et al., “High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability,” Cancer Discovery, vol. 1, no. 2, pp. 170–185, 2011. View at Google Scholar
  16. H. Wu, V. Goel, and F. G. Haluska, “PTEN signaling pathways in melanoma,” Oncogene, vol. 22, no. 20, pp. 3113–3122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Sun, T. Enomoto, M. Fujita et al., “Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia,” American Journal of Clinical Pathology, vol. 115, no. 1, pp. 32–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Kanamori, J. Kigawa, H. Itamochi et al., “Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma,” Clinical Cancer Research, vol. 7, no. 4, pp. 892–895, 2001. View at Google Scholar · View at Scopus
  19. M. R. Quddus, B. A. Ologun, C. J. Sung, M. M. Steinhoff, and W. D. Lawrence, “Utility of PTEN expression of endometrial “surface epithelial changes” and underlying atypical endometrial hyperplasia,” International Journal of Gynecological Pathology, vol. 28, no. 5, pp. 471–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Kong, A. Suzuki, T. T. Zou et al., “PTEN1 is frequently mutated in primary endometrial carcinomas,” Nature Genetics, vol. 17, no. 2, pp. 143–144, 1997. View at Google Scholar · View at Scopus
  21. G. L. Mutter, “PTEN, a protean tumor suppressor,” American Journal of Pathology, vol. 158, no. 6, pp. 1895–1898, 2001. View at Google Scholar · View at Scopus
  22. N. Bansal, V. Yendluri, and R. M. Wenham, “The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies,” Cancer Control, vol. 16, no. 1, pp. 8–13, 2009. View at Google Scholar · View at Scopus
  23. A. Velasco, E. Bussaglia, J. Pallares et al., “PIK3CA gene mutations in endometrial carcinoma. Correlation with PTEN and K-RAS alterations,” Human Pathology, vol. 37, no. 11, pp. 1465–1472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. P. Hayes, W. Douglas, and L. H. Ellenson, “Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma,” Gynecologic Oncology, vol. 113, no. 3, pp. 370–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Oda, D. Stokoe, Y. Taketani, and F. McCormick, “High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma,” Cancer Research, vol. 65, no. 23, pp. 10669–10673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Oda, J. Okada, L. Timmerman et al., “PIK3CA cooperates with other phosphatidylinositol 3-kinase pathway mutations to effect oncogenic transformation,” Cancer Research, vol. 68, no. 19, pp. 8127–8136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008.
  28. B. S. Jaiswal, V. Janakiraman, N. M. Kljavin et al., “Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation,” Cancer Cell, vol. 16, no. 6, pp. 463–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. E. Urick, M. L. Rudd, A. K. Godwin, D. Sgroi, M. Merino, and D. W. Bell, “PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer,” Cancer Research, vol. 71, no. 12, pp. 4061–4067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Shoji, K. Oda, S. Nakagawa et al., “The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas,” British Journal of Cancer, vol. 101, no. 1, pp. 145–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D.-H. Kim, D. D. Sarbassov, S. M. Ali et al., “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery,” Cell, vol. 110, no. 2, pp. 163–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, “Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex,” Science, vol. 307, no. 5712, pp. 1098–1101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. D. Sarbassov, S. M. Ali, D.-H. Kim et al., “Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton,” Current Biology, vol. 14, no. 14, pp. 1296–1302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Darb-Esfahani, A. Faggad, A. Noske et al., “Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma: association with stage and grade in vivo and link with response to rapamycin treatment in vitro,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 7, pp. 933–941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Shen, M. L. Stanton, W. Feng et al., “Morphoproteomic analysis reveals an overexpressed and constitutively activated phospholipase D1-mTORC2 pathway in endometrial carcinoma,” International Journal of Clinical and Experimental Pathology, vol. 4, no. 1, pp. 13–21, 2011. View at Google Scholar · View at Scopus
  38. K. H. Lu, W. Wu, B. Dave et al., “Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma,” Clinical Cancer Research, vol. 14, no. 9, pp. 2543–2550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Kang, S. S. Seo, H. J. Chang, C. W. Yoo, S. Y. Park, and S. M. Dong, “Mutual exclusiveness between PIK3CA and KRAS mutations in endometrial carcinoma,” International Journal of Gynecological Cancer, vol. 18, no. 6, pp. 1339–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Enomoto, M. Inoue, A. O. Perantoni et al., “K-ras activation in premalignant and malignant epithelial lesions of the human uterus,” Cancer Research, vol. 51, no. 19, pp. 5308–5314, 1991. View at Google Scholar · View at Scopus
  41. H. Lagarda et al., “K-ras mutations in endometrial carcinomas with microsatellite instability,” The Journal of Pathology, vol. 193, no. 2, pp. 193–199, 2001. View at Google Scholar
  42. K. Kobayashi, S. Sagae, R. Kudo, H. Saito, S. Koi, and Y. Nakamura, “Microsatellite instability in endometrial carcinomas: frequent replication errors in tumors of early onset and/or of poorly differentiated type,” Genes Chromosomes and Cancer, vol. 14, no. 2, pp. 128–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. R. T. Burks, T. D. Kessis, K. R. Cho, and L. Hedrick, “Microsatellite instability in endometrial carcinoma,” Oncogene, vol. 9, no. 4, pp. 1163–1166, 1994. View at Google Scholar · View at Scopus
  44. M. L. Rudd, J. C. Price, S. Fogoros et al., “A unique spectrum of somatic PIK3CA (p110α) mutations within primary endometrial carcinomas,” Clinical Cancer Research, vol. 17, no. 6, pp. 1331–1340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. T. A. Yap, M. D. Garrett, M. I. Walton, F. Raynaud, J. S. de Bono, and P. Workman, “Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 393–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Q. Cheng, C. W. Lindsley, G. Z. Cheng, H. Yang, and S. V. Nicosia, “The Akt/PKB pathway: molecular target for cancer drug discovery,” Oncogene, vol. 24, no. 50, pp. 7482–7492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. T. A. Yap, C. P. Carden, and S. B. Kaye, “Beyond chemotherapy: targeted therapies in ovarian cancer,” Nature Reviews Cancer, vol. 9, no. 3, pp. 167–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. D. A. Altomare, Q. W. Hui, K. L. Skele et al., “AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth,” Oncogene, vol. 23, no. 34, pp. 5853–5857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. B. Dilling, P. Dias, D. N. Shapiro, G. S. Germain, R. K. Johnson, and P. J. Houghton, “Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor,” Cancer Research, vol. 54, no. 4, pp. 903–907, 1994. View at Google Scholar · View at Scopus
  51. D. P. Houchens, A. A. Ovejera, S. M. Riblet, and D. E. Slagel, “Human brain tumor xenografts in nude mice as a chemotherapy model,” European Journal of Cancer and Clinical Oncology, vol. 19, no. 6, pp. 799–805, 1983. View at Google Scholar · View at Scopus
  52. D. Aguirre, P. Boya, D. Bellet et al., “Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma,” Apoptosis, vol. 9, no. 6, pp. 797–805, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Shi, A. Frankel, L. G. Radvanyi, L. Z. Penn, R. G. Miller, and G. B. Mills, “Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro,” Cancer Research, vol. 55, no. 9, pp. 1982–1988, 1995. View at Google Scholar · View at Scopus
  54. W. H. Mondesire, W. Jian, H. Zhang et al., “Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells,” Clinical Cancer Research, vol. 10, no. 20, pp. 7031–7042, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. V. L. Bae-Jump, C. Zhou, J. F. Boggess, and P. A. Gehrig, “Synergistic effect of rapamycin and cisplatin in endometrial cancer cells,” Cancer, vol. 115, no. 17, pp. 3887–3896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Shafer, C. Zhou, P. A. Gehrig, J. F. Boggess, and V. L. Bae-Jump, “Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis,” International Journal of Cancer, vol. 126, no. 5, pp. 1144–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Kollmannsberger, H. Hirte, L. L. Siu et al., “Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179),” Annals of Oncology, vol. 23, no. 1, pp. 238–244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Campone, V. Levy, E. Bourbouloux et al., “Safety and pharmacokinetics of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumours,” British Journal of Cancer, vol. 100, no. 2, pp. 315–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. Temkin, S. D. Yamada, and G. F. Fleming, “A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies,” Gynecologic Oncology, vol. 117, no. 3, pp. 473–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Diaz-Padilla, I. Duran, B. A. Clarke, and A. M. Oza, “Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer,” Cancer Treatment Reviews, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. P. K. Majumder, P. G. Febbo, R. Bikoff et al., “mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways,” Nature Medicine, vol. 10, no. 6, pp. 594–601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Boulay, S. Zumstein-Mecker, C. Stephan et al., “Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells,” Cancer Research, vol. 64, no. 1, pp. 252–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Beuvink, A. Boulay, S. Fumagalli et al., “The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation,” Cell, vol. 120, no. 6, pp. 747–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. B. M. Slomovitz, K. H. Lu, T. Johnston et al., “A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma,” Cancer, vol. 116, no. 23, pp. 5415–5419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. A. M. Oza, L. Elit, M.-S. Tsao et al., “Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group,” Journal of Clinical Oncology, vol. 29, no. 24, pp. 3278–3285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Hudes, M. Carducci, P. Tomczak et al., “Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 22, pp. 2271–2281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Colombo, S. McMeekin, P. Schwartz et al., “A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer,” Journal of Clinical Oncology, vol. 25, 2007, [abstract]. View at Google Scholar
  68. H. Mackay, S. Welch, M. S. Tsao et al., “Phase II study of oral ridaforolimus in patients with metastatic and/or locally advanced recurrent endometrial cancer: NCIC CTG IND 192,” Journal of Clinical Oncology, vol. 29, 2011. View at Google Scholar
  69. K. E. O'Reilly, F. Rojo, Q.-B. She et al., “mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt,” Cancer Research, vol. 66, no. 3, pp. 1500–1508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Wang, P. Yue, C.-B. Chan et al., “Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation,” Molecular and Cellular Biology, vol. 27, no. 21, pp. 7405–7413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Shoji, K. Oda, T. Kashiyama et al., “Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas,” PLoS ONE, vol. 7, no. 5, Article ID e37431, 2012. View at Publisher · View at Google Scholar
  72. P. M. Bhende, S. I. Park, M. S. Lim, D. P. Dittmer, and B. Damania, “The dual PI3K/mTOR inhibitor, NVP-BEZ235, is efficacious against follicular lymphoma,” Leukemia, vol. 24, no. 10, pp. 1781–1784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Muranen, L. M. Selfors, D. T. Worster et al., “Inhibition of PI3K/mTOR Leads to Adaptive Resistance in Matrix-Attached Cancer Cells,” Cancer Cell, vol. 21, no. 2, pp. 227–239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Santiskulvong, G. E. Konecny, M. Fekete et al., “Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma,” Clinical Cancer Research, vol. 17, no. 8, pp. 2373–2384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Maira, F. Stauffer, J. Brueggen et al., “Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 1851–1863, 2008. View at Publisher · View at Google Scholar
  76. A. M. Roccaro, A. Sacco, E. N. Husu et al., “Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia,” Blood, vol. 115, no. 3, pp. 559–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Serra, B. Markman, M. Scaltriti et al., “NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations,” Cancer Research, vol. 68, no. 19, pp. 8022–8030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. T.-J. Liu, D. Koul, T. LaFortune et al., “NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas,” Molecular Cancer Therapeutics, vol. 8, no. 8, pp. 2204–2210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. D. W. McMillin, M. Ooi, J. Delmore et al., “Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235,” Cancer Research, vol. 69, no. 14, pp. 5835–5842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Marone, D. Erhart, A. C. Mertz et al., “Targeting melanoma with dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors,” Molecular Cancer Research, vol. 7, no. 4, pp. 601–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Baumann, S. Mandl-Weber, F. Oduncu, and R. Schmidmaier, “The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma,” Experimental Cell Research, vol. 315, no. 3, pp. 485–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. G. F. Fleming, V. L. Filiaci, P. Hanjani et al., “Hormone therapy plus temsirolimus for endometrial carcinoma (EC): Gynecologic Oncology Group trial 248,” Journal of Clinical Oncology, vol. 29, 2011. View at Google Scholar
  83. B. M. Slomovitz, J. Brown, T. A. Johnston et al., “A phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma,” Journal of Clinical Oncology, vol. 29, 2011. View at Google Scholar
  84. A. Oza, A. Poveda, A. R. Clamp et al., “A randomized phase II (RP2) trial of ridaforolimus (R) compared with progestin (P) or chemotherapy (C) in female adult patients with advanced endometrial carcinoma,” Journal of Clinical Oncology, vol. 29, 2011. View at Google Scholar
  85. H. Hirte, L. Kaizer, H. Mackay et al., “Phase II study of MKC-1 in patients with metastatic or resistant epithelial ovarian cancer or advanced endometrial cancer,” Journal of Clinical Oncology, vol. 27, no. 5577, 2009, abstract no. 5577. View at Google Scholar
  86. H. Tanaka, M. Yoshida, H. Tanimura et al., “The selective class I PI3K inhibitor CH5132799 targets human cancers harboring oncogenic PIK3CA mutations,” Clinical Cancer Research, vol. 17, no. 10, pp. 3272–3281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Yoshioka, S. Yogosawa, T. Yamada, J. Kitawaki, and T. Sakai, “Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS,” Gynecologic Oncology, vol. 129, no. 2, pp. 425–432, 2013. View at Publisher · View at Google Scholar
  88. A. M. Oza, L. Elit, J. Biagi et al., “Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer—NCIC IND 160,” Journal of Clinical Oncology, vol. 24, 2006, abstract no. 3003. View at Google Scholar
  89. R. J. Amato, J. Jac, S. Giessinger, S. Saxena, and J. P. Willis, “A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer,” Cancer, vol. 115, no. 11, pp. 2438–2446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. R. J. Motzer, B. Escudier, S. Oudard et al., “Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial,” The Lancet, vol. 372, no. 9637, pp. 449–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. X. Wang and S.-Y. Sun, “Enhancing mTOR-targeted cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 13, no. 10, pp. 1193–1203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. LoPiccolo, G. M. Blumenthal, W. B. Bernstein, and P. A. Dennis, “Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations,” Drug Resistance Updates, vol. 11, no. 1-2, pp. 32–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. G. G. Chiang and R. T. Abraham, “Targeting the mTOR signaling network in cancer,” Trends in Molecular Medicine, vol. 13, no. 10, pp. 433–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. R. T. Abraham and J. J. Gibbons, “The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy,” Clinical Cancer Research, vol. 13, no. 11, pp. 3109–3114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Y. Choo and J. Blenis, “Not all substrates are treated equally Implications for mTOR, rapamycin-resistance and cancer therapy,” Cell Cycle, vol. 8, no. 4, pp. 567–572, 2009. View at Google Scholar · View at Scopus
  96. S. S. Schalm and J. Blenis, “Identification of a conserved motif required for mTOR signaling,” Current Biology, vol. 12, no. 8, pp. 632–639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. S. S. Schalm, D. C. Fingar, D. M. Sabatini, and J. Blenis, “TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function,” Current Biology, vol. 13, no. 10, pp. 797–806, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Wang, P. Yue, A. K. Young, H. Fu, F. R. Khuri, and S.-Y. Sun, “Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation,” Cancer Research, vol. 68, no. 18, pp. 7409–7418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. Q.-W. Fan, Z. A. Knight, D. D. Goldenberg et al., “A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma,” Cancer Cell, vol. 9, no. 5, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. B. Slomovitz, K. H. Lu, T. Johnston et al., “A phase II study of oral mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), in patients with recurrent endometrial carcinoma (EC),” J Clin Oncol, vol. 26, no. 15S, 2008. View at Google Scholar
  101. L. Yang, M. J. Clarke, B. L. Carlson et al., “PTEN loss does not predict for response to RAD001 (everolimus) in a glioblastoma orthotopic xenograft test panel,” Clinical Cancer Research, vol. 14, no. 12, pp. 3993–4001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Delbaldo, S. Albert, C. Dreyer et al., “Predictive biomarkers for the activity of mammalian target of rapamycin (mTOR) inhibitors,” Targeted Oncology, vol. 6, no. 2, pp. 119–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. E. E. W. Cohen, “mTOR: the mammalian target of replication,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 348–349, 2008. View at Publisher · View at Google Scholar · View at Scopus