Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 709738, 12 pages
http://dx.doi.org/10.1155/2014/709738
Research Article

A Novel Hybrid Self-Adaptive Bat Algorithm

1Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
2Department of Computer and Information Science, University of Macau, Avenue Padre Tomas Pereira, Taipa, Macau

Received 17 November 2013; Accepted 9 March 2014; Published 9 April 2014

Academic Editors: J. Shu and F. Yu

Copyright © 2014 Iztok Fister Jr. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Applied Soft Computing Journal, vol. 8, no. 1, pp. 687–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. J. Fister, D. Fister, and X. S. Yang, “A hybrid bat algorithm,” Electrotechnical Review, vol. 80, no. 1-2, pp. 1–7, 2013. View at Google Scholar
  3. I. F. Jr, D. Fister, and I. Fister, “A comprehensive review of cuckoo search: variants and hybrids,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 4, pp. 387–409, 2013. View at Google Scholar
  4. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Fister, I. J. Fister, X. S. Yang, and J. Brest, “A comprehensive review of firefly algorithms,” Swarm and Evolutionary Computation, vol. 13, pp. 34–46, 2013. View at Google Scholar
  6. I. Fister, X. S. Yang, D. Fister, and I. Fister Jr, “Firefly algorithm: a brief review of the expanding literature,” in Cuckoo Search and Firefly Algorithm, pp. 347–360, Springer, New York, NY, USA, 2014. View at Google Scholar
  7. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, December 1995. View at Scopus
  8. I. J. Fister, X. S. Yang, I. Fister, J. Brest, and D. Fister, “A brief review of nature-inspired algorithms for optimization,” Electrotechnical Review, vol. 80, no. 3, 2013. View at Google Scholar
  9. C. Darwin, The Origin of Species, John Murray, London, UK, 1859.
  10. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, The MIT Press, Cambridge, Mass, USA, 1992.
  11. A. Eiben and J. Smith, Introduction to Evolutionary Computing, Springer, Berlin, Germany, 2003.
  12. I. Rechenberg, Evolutionstrategie: Optimirung Technisher Systeme Nach Prinzipen des Biologischen Evolution, Fromman-Hozlboog, Stuttgard, Germany, 1973.
  13. I. Fister, M. Mernik, and B. Filipič, “Graph 3-coloring with a hybrid selfadaptive evolutionary algorithm,” Computer Optimization and Application, vol. 54, no. 3, pp. 741–770, 2013. View at Google Scholar
  14. C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm Intelligence: Introduction and Applications, C. Blum and D. Merkle, Eds., pp. 43–86, Springer, Berlin, Germany, 2008. View at Google Scholar
  15. I. Fister Jr., X. S. Yang, K. Ljubic, D. Fister, J. Brest, and I. Fister, “Towards the novel reasoning among particles in pso by the use of rdf and sparql,” The Scientific World. In press.
  16. X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NISCO '10), C. Cruz, J. Gonzlez, G. T. N. Krasnogor, and D. A. Pelta, Eds., vol. 284 of Studies in Computational Inteligence, pp. 65–74, Springer, Berlin, Germany, 2010. View at Google Scholar
  17. I. J. Fister, S. Fong, J. Brest, and F. Iztok, “Towards the self-adaptation in the bat algorithm,” in Proceedings of the 13th IASTED International Conference on Artificial Intelligence and Applications, 2014.
  18. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Google Scholar · View at Scopus
  19. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution a Practical Approach to Global Optimization, Springer, New York, NY, USA, 2005.
  20. D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Črepinšek, M. Mernik, and S.-H. Liu, “Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees,” International Journal of Innovative Computing and Applications, vol. 3, no. 1, pp. 11–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Rao, Engineering Optimization: Theory and Practice, John Wiley & Sons, New York, NY, USA, 2009.
  24. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Google Scholar · View at Scopus
  25. S. Wright, “The roles of mutation, inbreeding, crossbreeding, and selection in evolution,” in Proceedings of the 6th International Congress on Genetics, pp. 355–366, 1932.
  26. M. Jamil and X. S. Yang, “A literature survey of benchmark functions for global optimisation problems,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013. View at Google Scholar
  27. X. S. Yang, “Appendix A: test problems in optimization,” in Engineering Optimization, X. S. Yang, Ed., pp. 261–266, John Wiley & Sons, Hoboken, NJ, USA, 2010. View at Google Scholar
  28. X. S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 78–84, 2010. View at Google Scholar
  29. M. Friedman, “The use of ranks to avoid the assumption of normality implicit in the analysis of variance,” Journal of the American Statistical Association, vol. 32, pp. 675–701, 1937. View at Google Scholar
  30. M. Friedman, “A comparison of alternative tests of significance for the problem of m rankings,” The Annals of Mathematical Statistics, vol. 11, pp. 86–92, 1940. View at Google Scholar
  31. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006. View at Google Scholar · View at Scopus