Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 761745, 8 pages
http://dx.doi.org/10.1155/2014/761745
Research Article

Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

1Department of Software Engineering, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Mechanical Engineering, Technology Faculty, Firat University, Elazig, Turkey
4Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran

Received 15 October 2013; Accepted 10 December 2013; Published 20 March 2014

Academic Editors: Y. Hara and Y. Zhang

Copyright © 2014 M. Goodarzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Safaei, H. R. Goshayeshi, B. S. Razavi, and M. Goodarzi, “Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods,” Scientific Research and Essays, vol. 6, no. 22, pp. 4826–4838, 2011. View at Google Scholar · View at Scopus
  2. E. J. Braga and M. J. S. de Lemos, “Laminar and turbulent free convection in a composite enclosure,” International Journal of Heat and Mass Transfer, vol. 52, no. 3-4, pp. 588–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. V. Kuznetsov and M. A. Sheremet, “Numerical simulation of turbulent natural convection in a rectangular enclosure having finite thickness walls,” International Journal of Heat and Mass Transfer, vol. 53, no. 1–3, pp. 163–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Sheremet, “Mathematical simulation of conjugate turbulent natural convection in an enclosure with local heat source,” Thermophysics and Aeromechanics, vol. 18, no. 1, pp. 107–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Marafie, K. Khanafer, B. Al-Azmi, and K. Vafai, “Non-Darcian effects on the mixed convection heat transfer in a metallic porous block with a confined slot jet,” Numerical Heat Transfer A, vol. 54, no. 7, pp. 665–685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. R. Goshayshi, M. R. Safaei, and Y. Maghmoumi, “Numerical simulation of unsteady turbulent and laminar mixed convection in rectangular enclosure with hot upper moving wall by finite volume method,” in Proceedings of the 6th International Chemical Engineering Congress and Exhibition (ICheC'09), Kish Island, Iran, 2009.
  7. M. R. Safaei, Y. Maghmoumi, and A. Karimipour, “Numerical investigation of turbulence mixed convection heat transfer of water and drilling mud inside a square enclosure by finite volume method,” in Proceedings of the International Meeting on Advances in Thermofluids (IMAT'11), Melaka, Malaysia, October 2011.
  8. A. Karimipour, M. Afrand, M. Akbari, and M. R. Safaei, “Simulation of fluid flow and heat transfer in the inclined enclosure,” International Journal of Mechanical and Aerospace Engineering, vol. 6, pp. 86–91, 2012. View at Google Scholar
  9. A. K. Sharma, K. Velusamy, and C. Balaji, “Interaction of turbulent natural convection and surface thermal radiation in inclined square enclosures,” Heat and Mass Transfer, vol. 44, no. 10, pp. 1153–1170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xamán, J. Arce, G. Álvarez, and Y. Chávez, “Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall,” International Journal of Thermal Sciences, vol. 47, no. 12, pp. 1630–1638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. A. Shati, S. G. Blakey, and S. B. M. Beck, “An empirical solution to turbulent natural convection and radiation heat transfer in square and rectangular enclosures,” Applied Thermal Engineering, vol. 51, pp. 364–370, 2013. View at Google Scholar
  12. H. Zeinivand and F. Bazdidi-Tehrani, “Investigation of radiative heat transfer and three thermal radiation models in a turbulent non-premixed methane/air flame,” Heat Transfer Research, vol. 42, no. 6, pp. 571–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Safaei and H. R. Goshayshi, “Numerical simulation of laminar and turbulence flow of air: natural& mechanical ventilation inside a room,” in Proceedings of the 10th REHVA World Congress, Clima 2010: Sustainable Energy Use in Buildings, Antalya, Turkey, 2010.
  14. M. A. R. Sharif, “Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom,” Applied Thermal Engineering, vol. 27, no. 5-6, pp. 1036–1042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Y. Litvintsev and A. A. Dekterev, “Comparison of the finite-volume and discrete-ordinate methods and diffusion approximation for the radiative heat transfer equation,” Heat Transfer Research, vol. 39, no. 8, pp. 653–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Mahian, A. Kianifar, C. Kleinstreuer et al., “A review of entropy generation in nanofluid flow,” International Journal of Heat and Mass Transfer, vol. 65, pp. 514–532, 2013. View at Google Scholar
  17. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. View at Google Scholar · View at Scopus
  18. E. Abedini, A. Behzadmehr, S. M. H. Sarvari, and S. H. Mansouri, “Numerical investigation of subcooled flow boiling of a nanofluid,” International Journal of Thermal Sciences, vol. 64, pp. 232–239, 2013. View at Google Scholar
  19. M. Goodarzi, M. R. Safaei, K. Vafai et al., “Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model,” International Journal of Thermal Sciences, vol. 75, pp. 204–220, 2014. View at Google Scholar
  20. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, USA, 1980.
  21. M. R. Safaei, B. Rahmanian, and M. Goodarzi, “Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method,” International Journal of Physical Sciences, vol. 6, no. 33, pp. 7456–7470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Safaei, M. Goodarzi, and M. Mohammadi, “Numerical modeling of turbulence mixed convection heat transfer in air filled enclosures by finite volume method,” International Journal of Multiphysics, vol. 5, no. 4, pp. 307–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Karimipour, M. H. Esfe, M. R. Safaei, D. T. Semiromi, and S. N. Kazi, “Mixed convection of Copper-Water nanofluid in a shallow inclined lid driven cavity using lattice Boltzmann method,” Physica A, vol. 402, pp. 150–168, 2014. View at Google Scholar
  24. M. Goodarzi, M. R. Safaei, A. Karimipour et al., “Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures,” Abstract and Applied Analysis, vol. 2014, Article ID 762184, 15 pages, 2014. View at Publisher · View at Google Scholar
  25. M. R. Safaei and H. R. Goshayshi, “Investigation of turbulence mixed convection in air filled enclosures,” Journal of Chemical Engineering and Materials Science, vol. 2, no. 6, pp. 87–95, 2011. View at Google Scholar