Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 767018, 6 pages
http://dx.doi.org/10.1155/2014/767018
Research Article

The Application of Multiobjective Genetic Algorithm to the Parameter Optimization of Single-Well Potential Stochastic Resonance Algorithm Aimed at Simultaneous Determination of Multiple Weak Chromatographic Peaks

1Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, China
2Nanjing Changao Pharmaceutical Technology Limited, No. 1 Hengfei Road, Economic and Technological Development Zone, Nanjing 210038, China
3Center for Instrumental Analysis, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, China
4Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China
5Department of Engineering and Technology, Jiangsu Institute of Economic and Trade Technology, Nanjing 210007, China

Received 21 August 2013; Accepted 20 October 2013; Published 12 January 2014

Academic Editors: M. C. Yebra-Biurrun and R. Zakrzewski

Copyright © 2014 Haishan Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Pan, W. Guo, X. Wu, W. Cai, and X. Shao, “A new stochastic resonance algorithm to improve the detection limits for trace analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 66, no. 1, pp. 41–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance,” Journal of Physics A, vol. 14, no. 11, pp. L453–L457, 1981. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Zhang, B. Xiang, Y. Wu, and E. Shang, “Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of glyburide in plasma,” Analytica Chimica Acta, vol. 550, no. 1-2, pp. 77–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Xiang, W. Wang, B. Xiang, H. Deng, and S. Xie, “Periodic modulation-based stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatography-mass spectrometry signal of granisetron in plasma,” International Journal of Mass Spectrometry, vol. 262, no. 3, pp. 174–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ye, B. Xiang, W. Zhang, and E. Shang, “Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of Sudan I,” Physics Letters A, vol. 359, no. 6, pp. 620–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Xie, H. Deng, B. Xiang, and S. Xiang, “Detection of trace triclocarban in water sample using solid-phase extraction—liquid chromatography with stochastic resonance algorithm,” Environmental Science and Technology, vol. 42, no. 8, pp. 2988–2991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Zhang, B. Xiang, Y. Wu, and E. Shang, “Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of roxithromycin in beagle dog plasma,” Journal of Chromatography B, vol. 831, no. 1-2, pp. 307–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Deng, B. Xiang, X. Liao, and S. Xie, “A linear modulation-based stochastic resonance algorithm applied to the detection of weak chromatographic peaks,” Analytical and Bioanalytical Chemistry, vol. 386, no. 7-8, pp. 2199–2205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Xie, B. Xiang, H. Deng, S. Xiang, and J. Lu, “Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal,” Analytica Chimica Acta, vol. 585, no. 1, pp. 60–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhang and B. R. Xiang, “A new single-well potential stochastic resonance algorithm to detect the weak signal,” Talanta, vol. 70, no. 2, pp. 267–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhan, B. Xiang, W. Zhang, S. Xie, H. Deng, and S. Xiang, “Single-well potential stochastic resonance applied to quantitative analysis for weak chromatographic signals of Sudan IV,” Analytical Letters, vol. 40, no. 12, pp. 2415–2424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Xiang, W. Wang, J. Xia, B. Xiang, and P. Ouyang, “Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples,” Journal of Chromatographic Science, vol. 47, no. 8, pp. 700–704, 2009. View at Google Scholar · View at Scopus
  13. H. Deng, B. Xiang, S. Xie, and X. Zhou, “Trace determination of carbendazim and thiabendazole in drinking water by liquid chromatography and using linear modulated stochastic resonance algorithm,” Arzneimittel-Forschung/Drug Research, vol. 57, no. 11, pp. 717–722, 2007. View at Google Scholar · View at Scopus
  14. H. Deng, E. Shang, B. Xiang et al., “Application of the stochastic resonance algorithm to the simultaneous quantitative determination of multiple weak peaks of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 25, no. 5, pp. 563–571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. B. Lucasius and G. Kateman, “Genetic algorithms for large-scale optimization in chemometrics: an application,” Trends in Analytical Chemistry, vol. 10, no. 8, pp. 254–261, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Riahi, M. R. Ganjali, A. B. Moghaddam, E. Pourbasheer, and P. Norouzi, “Development of a new combined chemometrics method, applied in the simultaneous voltammetric determination of cinnamic acid and 3, 4-dihydroxy benzoic acid,” Current Analytical Chemistry, vol. 5, no. 1, pp. 42–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Wang, S. Xiang, S. Xie, and B. Xiang, “An adaptive single-well stochastic resonance algorithm applied to trace analysis of clenbuterol in human urine,” Molecules, vol. 17, no. 2, pp. 1929–1938, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Link and D. Weuster-Botz, “Genetic algorithm for multi-objective experimental optimization,” Bioprocess and Biosystems Engineering, vol. 29, no. 5-6, pp. 385–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Reviews of Modern Physics, vol. 70, no. 1, pp. 223–287, 1998. View at Google Scholar · View at Scopus
  20. A. Tocino and R. Ardanuy, “Runge-Kutta methods for numerical solution of stochastic differential equations,” Journal of Computational and Applied Mathematics, vol. 138, no. 2, pp. 219–241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. S. Asdi and A. H. Tewfik, “Detection of weak signals using adaptive stochastic resonance,” in Proceedings of the 20th International Conference on Acoustics, Speech, and Signal Processing (ICASSP '95), vol. 2, pp. 1332–1335, Detroit, Mich, USA, May 1995. View at Scopus
  22. F. Castiglione, F. Pappalardo, M. Bernaschi, and S. Motta, “Optimization of HAART with genetic algorithms and agent-based models of HIV infection,” Bioinformatics, vol. 23, no. 24, pp. 3350–3355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization: formulation, discussion and generalization,” in Proceedings of the 5th International Conference on Genetic Algorithms, vol. 423, pp. 416–423, 1993.
  24. J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100, Pittsburgh, Pa, USA, July 1985.
  25. X. Wang, Genetic Algorithms: Theories, Applications and Software Implementations, Xi’an Jiaotong University Press, Xi’an, China, 2002.