Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 792420, 7 pages
http://dx.doi.org/10.1155/2014/792420
Research Article

Cellular Localization and Biochemical Characterization of a Chimeric Fluorescent Protein Fusion of Arabidopsis Cellulose Synthase-Like A2 Inserted into Golgi Membrane

Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Provinciale Lecce-Monteroni, 73100 Lecce, Italy

Received 29 August 2013; Accepted 27 October 2013; Published 14 January 2014

Academic Editors: L. Costa, D. Sarkar, B. Vyskot, and C. R. Wilson

Copyright © 2014 Monica De Caroli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Doblin, I. Kurek, D. Jacob-Wilk, and D. P. Delmer, “Cellulose biosynthesis in plants: from genes to rosettes,” Plant and Cell Physiology, vol. 43, no. 12, pp. 1407–1420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Cosgrove, “Growth of the plant cell wall,” Nature Reviews Molecular Cell Biology, vol. 6, no. 11, pp. 850–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. S. Sandhu, G. S. Randhawa, and K. S. Dhugga, “Plant cell wall matrix polysaccharide biosynthesis,” Molecular Plant, vol. 2, no. 5, pp. 840–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Liepman, R. Wightman, N. Geshi, S. R. Turner, and H. V. Scheller, “Arabidopsis—a powerful model system for plant cell wall research,” Plant Journal, vol. 61, no. 6, pp. 1107–1121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. P. Delmer, “Cellulose biosynthesis: exciting times for a difficult field of study,” Annual Review of Plant Biology, vol. 50, pp. 245–276, 1999. View at Google Scholar · View at Scopus
  6. T. A. Richmond and C. R. Somerville, “The cellulose synthase superfamily,” Plant Physiology, vol. 124, no. 2, pp. 495–498, 2000. View at Google Scholar · View at Scopus
  7. M. S. Doblin, C. E. Vegara, S. Read, E. Newbigin, and A. Bacic, “Plant cell wall biosynthesis: making the bricks,” in Annual Plant Reviews, The Plant Cell Wall, J. K. C. Rose, Ed., Blackwell, 2003. View at Google Scholar
  8. W.-R. Scheible and M. Pauly, “Glycosyltransferases and cell wall biosynthesis: novel players and insights,” Current Opinion in Plant Biology, vol. 7, no. 3, pp. 285–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. H. Liepman and D. M. Cavalier, “The cellulose synthase like A and cellulose synthase like C families: recent advances and future perspectives,” Frontiers in Plant Science, vol. 3, no. 109, pp. 1–7, 2012. View at Google Scholar
  10. I. M. Saxena, R. M. Brown Jr., M. Fevre, R. A. Geremia, and B. Henrissat, “Multidomain architecture of β-glycosyl transferases: Implications for mechanism of action,” Journal of Bacteriology, vol. 177, no. 6, pp. 1419–1424, 1995. View at Google Scholar · View at Scopus
  11. T. A. Richmond and C. R. Somerville, “Integrative approaches to determining Csl function,” Plant Molecular Biology, vol. 47, no. 1-2, pp. 131–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Oikawa, C. H. Lund, Y. Sakuragi, and H. V. Scheller, “Golgi-localized enzyme complexes for plant cell wall biosynthesis,” Trends in Plant Science, vol. 18, no. 1, pp. 49–58, 2013. View at Google Scholar
  13. L. Norambuena, L. Marchant, P. Berninsone, C. B. Hirschberg, H. Silva, and A. Orellana, “Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactose/UDP-glucose transporter,” The Journal of Biological Chemistry, vol. 277, no. 36, pp. 32923–32929, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Reyes and A. Orellana, “Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis,” Current Opinion in Plant Biology, vol. 11, no. 3, pp. 244–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Dhugga, R. Barreiro, B. Whitten et al., “Guar seed β-mannan synthase is a member of the cellulose synthase super gene family,” Science, vol. 303, no. 5656, pp. 363–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. H. Liepman, C. G. Wilkerson, and K. Keegstra, “Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2221–2226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-C. Cocuron, O. Lerouxel, G. Drakakaki et al., “A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 20, pp. 8550–8555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Burton, S. M. Wilson, M. Hrmova et al., “Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans,” Science, vol. 311, no. 5769, pp. 1940–1942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Doblin, F. A. Pettolino, S. M. Wilson et al., “A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D- glucan synthesis in transgenic Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5996–6001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. De Caroli, M. S. Lenucci, G.-P. Di Sansebastiano, G. Dalessandro, G. De Lorenzo, and G. Piro, “Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco,” Plant Journal, vol. 65, no. 2, pp. 295–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Leucci, G.-P. Di Sansebastiano, M. Gigante, G. Dalessandro, and G. Piro, “Secretion marker proteins and cell-wall polysaccharides move through different secretory pathways,” Planta, vol. 225, no. 4, pp. 1001–1017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  23. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  24. M. P. Lisanti, I. W. Caras, T. Gilbert, D. Hanzel, and E. Rodriguez-Boulan, “Vectorial apical delivery and slow endocytosis of a glycolipid-anchored fusion protein in transfected MDCK cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 19, pp. 7419–7423, 1990. View at Google Scholar · View at Scopus
  25. G. Piro, A. Zuppa, G. Dalessandro, and D. H. Northcote, “Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases,” Planta, vol. 190, no. 2, pp. 206–220, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Pacoda, A. Montefusco, G. Piro, and G. Dalessandro, “Reactive oxygen species and nitric oxide affect cell wall metabolism in tobacco BY-2 cells,” Journal of Plant Physiology, vol. 161, no. 10, pp. 1143–1156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Dalessandro, G. Piro, and D. H. Northcote, “A membrane-bound enzyme complex synthesising glucan and glucomannan in pine tissues,” Planta, vol. 175, no. 1, pp. 60–70, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Ritzenthaler, A. Nebenführ, A. Movafeghi et al., “Reevaluation of the effects of brefeldin a on plant cells using tobacco bright yellow 2 cells expressing golgi-targeted green fluorescent protein and copi antisera,” Plant Cell, vol. 14, no. 1, pp. 237–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Saint-Jore-Dupas, A. Nebenführ, A. Boulaflous et al., “Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway,” Plant Cell, vol. 18, no. 11, pp. 3182–3200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. P. S. Verma and Z. Hong, “Plant callose synthase complexes,” Plant Molecular Biology, vol. 47, no. 6, pp. 693–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Lerouxel, D. M. Cavalier, A. H. Liepman, and K. Keegstra, “Biosynthesis of plant cell wall polysaccharides—a complex process,” Current Opinion in Plant Biology, vol. 9, no. 6, pp. 621–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Zeng and K. Keegstra, “AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosol,” Planta, vol. 228, no. 5, pp. 823–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Davis, F. Brandizzi, A. H. Liepman, and K. Keegstra, “Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane,” Plant Journal, vol. 64, no. 6, pp. 1028–1037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Pear, Y. Kawagoe, W. E. Schreckengost, D. P. Delmer, and D. M. Stalker, “Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 22, pp. 12637–12642, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. A. H. Liepman, C. J. Nairn, W. G. T. Willats, I. Sørensen, A. W. Roberts, and K. Keegstra, “Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants,” Plant Physiology, vol. 143, no. 4, pp. 1881–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. H. Northcote, “Chemistry of plant cell wall,” Annual Review of Plant Physiology, vol. 23, pp. 113–132, 1972. View at Google Scholar
  37. A. Bacic, P. J. Harris, and B. A. Stone, “Structure and function of plant cell walls,” in Biochemistry of Plants, J. Preiss, Ed., vol. 14, pp. 297–371, Academic Press, New York, NY, USA, 1988. View at Google Scholar
  38. H. Meier and J. S. G. Reid, “Reserve polysaccharides other than starch in higher plants,” in Encyclopedia of Plant Physiology, F. A. Loewus and W. Tanner, Eds., vol. 13, pp. 418–471, Springer, Berlin, Germany, 1982. View at Google Scholar
  39. G. Piro, M. Lenucci, G. Dalessandro et al., “Ultrastructure, chemical composition and biosynthesis of the cell wall in Koliella antarctica (Klebsormidiales, Chlorophyta),” European Journal of Phycology, vol. 35, no. 4, pp. 331–337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Suzuki, L. Li, Y.-H. Sun, and V. L. Chiang, “The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa,” Plant Physiology, vol. 142, no. 3, pp. 1233–1245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Ubeda-Tomas, E. Edvardsson, C. Eland et al., “Genomic-assisted identification of genes involved in secondary growth in Arabidopsis utilising transcript profiling of poplar wood-forming tissues,” Physiologia Plantarum, vol. 129, no. 2, pp. 415–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Goubet, C. J. Barton, J. C. Mortimer et al., “Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis,” Plant Journal, vol. 60, no. 3, pp. 527–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. O. O. Obembe, E. Jacobsen, R. G. F. Visser, and J.-P. Vincken, “Cellulose-hemicellulose networks as target for in planta modification of the properties of natural fibres,” Biotechnology and Molecular Biology Review, vol. 1, no. 3, pp. 76–86, 2006. View at Google Scholar