Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 797128, 11 pages
http://dx.doi.org/10.1155/2014/797128
Research Article

Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

1School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
2Tecnalia Serbia Ltd., 11120 Belgrade, Serbia

Received 30 August 2013; Accepted 12 November 2013; Published 27 January 2014

Academic Editors: N. Nakhostin Ansari and W. Schupp

Copyright © 2014 Andrej M. Savić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Soekadar, N. Birbaumer, and L. G. Cohen, “Brain-computer interfaces in the rehabilitation of stroke and neurotrauma,” in Systems Neuroscience and Rehabilitation, pp. 3–18, Springer, Berlin, Germany, 2011. View at Google Scholar
  2. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. E. W. Sellers, T. M. Vaughan, and J. R. Wolpaw, “A brain-computer interface for long-term independent home use,” Amyotrophic Lateral Sclerosis, vol. 11, no. 5, pp. 449–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Pfurtscheller, G. R. Müller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, “'Thought'—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia,” Neuroscience Letters, vol. 351, no. 1, pp. 33–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Pfurtscheller, G. R. Müller-Putz, J. Pfurtscheller, and R. Rupp, “EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient,” EURASIP Journal on Applied Signal Processing, vol. 2005, no. 19, pp. 3152–3155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, and C. Neuper, “Brain oscillations control hand orthosis in a tetraplegic,” Neuroscience Letters, vol. 292, no. 3, pp. 211–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Galán, M. Nuttin, E. Lew et al., “A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, no. 9, pp. 2159–2169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Leeb, D. Friedman, G. R. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller, “Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic,” Computational Intelligence and Neuroscience, vol. 2007, Article ID 79642, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Rebsamen, C. Guan, H. Zhang et al., “A brain controlled wheelchair to navigate in familiar environments,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 6, pp. 590–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6, pp. 510–523, 1988. View at Google Scholar · View at Scopus
  11. N. Birbaumer, N. Ghanayim, T. Hinterberger et al., “A spelling device for the paralysed,” Nature, vol. 398, no. 6725, pp. 297–298, 1999. View at Google Scholar · View at Scopus
  12. N. Birbaumer, A. Kübler, N. Ghanayim et al., “The thought translation device (TTD) for completely paralyzed patients,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 190–193, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, and D. Hu, “A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm,” Journal of Neural Engineering, vol. 10, no. 2, Article ID 026012, 2013. View at Publisher · View at Google Scholar
  14. B. H. Dobkin, “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation,” The Journal of Physiology, vol. 579, no. 3, pp. 637–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Silvoni, A. Ramos-Murguialday, M. Cavinato et al., “Brain-computer interface in stroke: a review of progress,” Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 245–252, 2011. View at Google Scholar · View at Scopus
  16. N. Birbaumer and L. G. Cohen, “Brain-computer interfaces: communication and restoration of movement in paralysis,” The Journal of Physiology, vol. 579, no. 3, pp. 621–636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ramos-Murguialday, M. Schürholz, V. Caggiano et al., “Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses,” PloS ONE, vol. 7, no. 10, Article ID e47048, 2012. View at Publisher · View at Google Scholar
  18. J. J. Daly and J. R. Wolpaw, “Brain-computer interfaces in neurological rehabilitation,” The Lancet Neurology, vol. 7, no. 11, pp. 1032–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wang, J. L. Collinger, M. A. Perez et al., “Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 1, pp. 157–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Grosse-Wentrup, D. Mattia, and K. Oweiss, “Using brain-computer interfaces to induce neural plasticity and restore function,” Journal of Neural Engineering, vol. 8, no. 2, Article ID 025004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. K. Ang and C. Guan, “Brain-computer interface in stroke rehabilitation,” Journal of Computing Science and Engineering, vol. 7, pp. 139–146, 2013. View at Google Scholar
  22. N. Mrachacz-Kersting, S. R. Kristensen, I. K. Niazi, and D. Farina, “Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity,” The Journal of Physiology, vol. 590, no. 7, pp. 1669–1682, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. I. K. Niazi, N. Mrachacz-Kersting, N. Jiang, K. Dremstrup, and D. Farina, “Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, pp. 595–604, 2012. View at Google Scholar
  24. A. Caria, C. Weber, D. Brötz et al., “Chronic stroke recovery after combined BCI training and physiotherapy: a case report,” Psychophysiology, vol. 48, no. 4, pp. 578–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. d. R. Millan, R. Rupp, G. R. Müller-Putz et al., “Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges,” Frontiers in Neuroscience, vol. 4, article 161, 2010. View at Publisher · View at Google Scholar
  26. G. Pfurtscheller, B. Z. Allison, C. Brunner et al., “The hybrid BCI,” Frontiers in Neuroscience, vol. 4, p. 30, 2010. View at Publisher · View at Google Scholar
  27. B. Z. Allison, R. Leeb, C. Brunner et al., “Toward smarter BCIs: extending BCIs through hybridization and intelligent control,” Journal of Neural Engineering, vol. 9, no. 1, Article ID 013001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Amiri, R. Fazel-Rezai, and V. Asadpour, “A review of hybrid brain-computer interface systems,” Advances in Human-Computer Interaction, vol. 2013, 8 pages, 2013. View at Publisher · View at Google Scholar
  29. M. B. Popović, D. B. Popović, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Restitution of reaching and grasping promoted by functional electrical therapy,” Artificial Organs, vol. 26, no. 3, pp. 271–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. D. B. Popović, T. Sinkjær, and M. B. Popović, “Electrical stimulation as a means for achieving recovery of function in stroke patients,” NeuroRehabilitation, vol. 25, no. 1, pp. 45–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. B. Popović, M. B. Popović, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 8-9, pp. 749–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Popović, D. B. Popović, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Clinical evaluation of functional electrical therapy in acute hemiplegic subjects,” Journal of Rehabilitation Research and Development, vol. 40, no. 5, pp. 443–453, 2003. View at Google Scholar · View at Scopus
  33. M. B. Popović, D. B. Popović, L. Schwirtlich, and T. Sinkjær, “Functional electrical therapy (FET): clinical trial in chronic hemiplegic subjects,” Neuromodulation, vol. 7, no. 2, pp. 133–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. B. Popović, M. B. Popović, and T. Sinkjær, “Neurorehabilitation of upper extremities in humans with sensory-motor impairment,” Neuromodulation, vol. 5, no. 1, pp. 54–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. P. H. Peckham and J. S. Knutson, “Functional electrical stimulation for neuromuscular applications,” Annual Review of Biomedical Engineering, vol. 7, pp. 327–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Savić, U. Kisic, and M. Popović, “Toward a hybrid BCI for grasp rehabilitation,” in Proceedings of the 5th European Conference of the International Federation for Medical and Biological Engineering, pp. 806–809, 2012.
  37. M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, “Brain-computer interfaces based on the steady-state visual-evoked response,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 211–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Pfurtscheller and F. H. Lopes Da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Pfurtscheller and C. Neuper, “Motor imagery activates primary sensorimotor area in humans,” Neuroscience Letters, vol. 239, no. 2-3, pp. 65–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Savić, N. Malešević, and M. B. Popović, “Motor imagery based BCI for control of FES,” Clinical Neurophysiology, vol. 124, pp. e11–e12, 2013. View at Google Scholar
  41. A. Savić, N. Malešević, and M. Popović, “Motor imagery driven BCI with cue-based selection of FES induced grasps,” in Converging Clinical and Engineering Research on Neurorehabilitation, J. L. Pons, D. Torricelli, and M. Pajaro, Eds., vol. 1, pp. 513–516, Springer, Berlin, Germany, 2013. View at Google Scholar
  42. A. Savić, M. Popović, and D. B. Popović, “Event related desynchronisation/synchronization based method for quantification of neural activity during self-paced versus cue-based motor task,” Clinical Neurophysiology, vol. 123, p. e81, 2012. View at Google Scholar
  43. A. Savić, M. B. Popović, and D. B. Popović, “Detection of the “will to move” for an ambulatory system for tremor suppression based on functional electrical stimulation,” Clinical Neurophysiology, vol. 121, p. e16, 2010. View at Google Scholar
  44. N. M. Malešević, L. Z. Maneski, V. Ilic et al., “A multi-pad electrode based functional electrical stimulation system for restoration of grasp,” Journal of Neuroengineering and Rehabilitation, vol. 9, p. 66, 2012. View at Google Scholar
  45. L. Z. P. Maneski, N. M. Malešević, A. M. Savić, T. Keller, and D. B. Popović, “Surface distributed low-frequency asynchronous stimulation (sDLFAS) delays fatigue of stimulated muscles,” Muscle & Nerve, vol. 48, no. 6, pp. 930–937, 2013. View at Publisher · View at Google Scholar
  46. L. P. Popović-Maneski, M. Kostic, G. Bijelic, T. Keller, S. Mitrovic, L. Konstantinovic et al., “Multi-pad electrode for effective grasping: design,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, pp. 648–654, 2013. View at Google Scholar
  47. G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, “Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Z. Allison, C. Brunner, V. Kaiser, G. R. Müller-Putz, C. Neuper, and G. Pfurtscheller, “Toward a hybrid brain-computer interface based on imagined movement and visual attention,” Journal of Neural Engineering, vol. 7, no. 2, Article ID 026007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G. Pfurtscheller, “An SSVEP BCI to control a hand orthosis for persons with tetraplegia,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. R. Soekadar, M. Witkowski, J. Mellinger, A. Ramos, N. Birbaumer, and L. G. Cohen, “ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 5, pp. 542–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Stępień, J. Conradi, G. Waterstraat, F. U. Hohlefeld, G. Curio, and V. V. Nikulin, “Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke,” Neuroscience Letters, vol. 488, no. 1, pp. 17–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. J. Fu, J. J. Daly, and M. C. Çavuşoǧlu, “Assessment of EEG event-related desynchronization in stroke survivors performing shoulder-elbow movements,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 3158–3164, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Broetz, C. Braun, C. Weber, S. R. Soekadar, A. Caria, and N. Birbaumer, “Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report,” Neurorehabilitation and Neural Repair, vol. 24, no. 7, pp. 674–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Buch, C. Weber, L. G. Cohen et al., “Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke,” Stroke, vol. 39, no. 3, pp. 910–917, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. J. Daly, R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring, “Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke,” Journal of Neurologic Physical Therapy, vol. 33, no. 4, pp. 203–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of a brain-computer interface with high transfer rates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 10, pp. 1181–1186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Allison, T. Lüth, D. Valbuena, A. Teymourian, I. Volosyak, and A. Gräser, “BCI demographics: how many (and what kinds of) people can use an SSVEP BCI?” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, pp. 107–116, 2010. View at Publisher · View at Google Scholar · View at Scopus