The Scientific World Journal

The Scientific World Journal / 2014 / Article

Review Article | Open Access

Volume 2014 |Article ID 828131 | 34 pages | https://doi.org/10.1155/2014/828131

Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

Academic Editor: V. A. Rogov
Received17 Aug 2013
Accepted31 Oct 2013
Published17 Feb 2014

Abstract

Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

1. Introduction

There are ten primary GHGs including water vapor (H2O), carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) that are naturally occurring. Perfluorocarbons (CF4, C2F6), hydrofluorocarbons (CHF3, CF3CH2F, and CH3CHF2), and sulfur hexafluoride (SF6), are only present in the atmosphere due to industrial processes. Water vapor is the most important, abundant and dominant greenhouse gas, and CO2 is the second-most important one (Table 1). Concentration of water vapor depends on temperature and other meteorological conditions, and not directly upon human activities. So it was not indicated in Table 1 [13].


CompoundPreindustrial concentration (ppmv)Concentration in 2011 (ppmv)Atmospheric lifetime (years)Main human activity sourceGWP**

Carbon dioxide (CO2) 280388.5~100Fossil fuels, cement production, land use1
Methane (CH4) 0.7151.87/1.74812Fossil fuels, rice paddies, waste dumps, livestock25
Nitrous oxide (N2O) 0.270.323114Fertilizers, combustion industrial processes298
CFC-12 (CCL2F2)00.000533100Liquid coolants, foams10,900
CF-113 (CCl2CClF2)00.0000007585n.a.6,130
HFC 23 (CHF3) 00.000018270Electronics, refrigerants11,700
HCFC-22 (CCl2F2)00.00021812Refrigerants1,810
HFC 134 (CF3CH2F) 00.00003514Refrigerants1,300
HCFC-141b (CH3CCl2F)00.000000229.3n.a.725
HCFC-142b (CH3CClF2)00.0000002017.9n.a.2,310
HFC 152 (CH3CHF2) 00.00000391.4Industrial processes140
Perfluoromethane (CF4) 0.000040.00008*50,000Aluminum production6,500
Perfluoroethane (C2F6) 00.000003*10,000Aluminum production9,200
Sulfur hexafluoride (SF6) 00.00000712*3,200Dielectric fluid22,800

 *Concentration in 2011.
**Global warming potentials (GWPs) measure the relative effectiveness of GHGs in trapping the Earth’s heat.

CO2 is the primary anthropogenic greenhouse gas, accounting for 77% of the human contribution to the greenhouse effect in recent decade (26 to 30 percent of all CO2 emissions). Main anthropogenic emissions of CO2 come from the combustion of fossil fuels. CO2 concentration in flue gases depends on the fuel such as coal (12–15 mol-% CO2) and natural gas (3-4 mol-% CO2). In petroleum and other industrial plants, CO2 concentration in exhaust stream depends on the process such as oil refining (8-9 mol% CO2) and production of cement (14–33 mol-% CO2) and iron and steel (20–44 mol-%). From 2004 to 2011, global CO2 emissions from energy uses were increased 26% (Figure 1) [410]. Figure 2 indicates that power plant (55% of global CO2 emissions), transportation (23%), and industry (19%) have highest share in the CO2 emission in USA. Cement and petrochemical plants are two major industries for CO2 emission, such that cement industry contributes about 5% to global anthropogenic CO2 emissions. Also, petrochemical industries are a large share of CO2 emission; for example, only in Iran, petrochemical industries emission was about 15 Mton CO2/year [1116].

The Kyoto Protocol is the first international agreement on emissions of GHGs. In this protocol, industrialized countries agreed to stabilize or reduce the GHGs emissions in the commitment period 2008–2012 by 5.2% on average (compared to their 1990 emissions level). Overall, the result of global CO2 emissions (Figure 1) shows the failure of Kyoto protocol; therefore, in 2011 Durban COP meeting, this protocol was extended until 2017. Several countries with high GHGs emission like China, India, Brazil, and even Iran have added to this Protocol. Intergovernmental Panel on Climate Change (IPCC) predicted the atmosphere may contain up to 570 ppmv CO2 by the year 2100, causing a rise of mean global temperature and sea level around 1.9°C and 38 m, respectively [15, 1720]. Given that the earth’s average temperature continues to rise, Intergovernmental Panel on Climate Change (IPCC) stated, global GHG emissions must be reduced by 50 to 80 percent by 2050 to avoid dramatic consequences of global warming [2123].

Carbon capture and storage (CCS) is the most indicated technology to decrease CO2 emission from fossil fuels sources to atmosphere. Also, CO2 separated from flue gases can be used in enhanced oil recovery (EOR) operations where CO2 is injected into oil reservoirs to increase mobility of oil and reservoir recovery [24, 25]. Pure CO2 has many applications in food/beverage and different chemical industries such as urea and fertilizer production, foam blowing, carbonation of beverages and dry ice production, or even in the supercritical state as supercritical solvent [2628].

From this definition, CCS consists of three basic stages: (a) separation of CO2, (b) transportation, and (c) storage. Operating costs of these stages have been estimated in 2008:(i)CO2 separation from exhausting gases: 24 to 52 €/ton-CO2,(ii)transportation to storage location: 1 to 6 €/ton-CO2 per 100 km,(iii)storage: −28 to 42 €/ton-CO2.

Therefore, CO2 separation is a major stage in CCS. The CCS total costs can vary from −3 to 106 €/ton-CO2 (negative values are expected for the injection of CO2 in EOR). There are three major approaches for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture (Figure 3) [25, 30, 31].

Pre-combustion capture involves reaction of a fuel with oxygen or air and in some cases steam to produce a gas mainly composed of carbon monoxide and hydrogen, which is known as synthesis gas (syngas) or fuel gas. The produced carbon monoxide is reacted with steam in a catalytic reactor, called shift converter, to give CO2 and more hydrogen. CO2 is then separated, usually by cryogenic distillation or chemical absorption process, resulting in a hydrogen-rich fuel that can be used in many applications, such as furnaces, gas turbines, engines and fuel cells [32, 33].

A main advantage of post-combustion is the higher CO2 concentration and pressure achieved in the output stream. The main disadvantage of pre-combustion capture is system needs long-term development in a number of enabling technical areas to achieve targeted efficiency towards a hydrogen economy. This disadvantage has limited application of this approach and increased investments costs of pre-combustion capture [34, 35].

In oxy-fuel combustion, nearly pure oxygen is used for combustion instead of ambient air, and this results in a flue gas that is mainly CO2 and H2O, which are separated by condensing water. Three major advantages of this method are high CO2 concentration in output stream (above 80% v/v), high flame temperature, and easy separation of exhaust gases. The major disadvantages of oxy-fuel combustion are high capital cost and large electric power requirement to separate oxygen from air [3638].

The principle of post-combustion capture is CO2 separation from flue gas after combustion. Generally, the CO2 in flue gas is diluted (8–15% CO2) with inert gases such as nitrogen, argon, and water in addition to oxygen. Flue gases are normally at atmospheric pressure and high temperatures (between 320 K and 400 K) [3941]. Post-combustion capture does not require expensive technologies such as syngas separation, hydrogen turbine, fuel cell. Post-combustion capture is the most important to prevent CO2 emissions, because it offers flexibility and does not need to change combustion cycle. If the capture plant shuts down, the power plant can still operate [42, 43]. Major disadvantage of this method is unfavorable condition of flue gases.

Because of the importance in selecting suitable process for CO2 separation, in this research various technologies for this purpose have been focused.

2. CO2 Separation Technologies

Based on economical and environmental considerations, it is necessary to apply efficient and suitable technology for CO2 separation with low operating cost and energy consumption. Up to now, there are several gas separation technologies being investigated for post-combustion capture, namely, (a) absorption, (b) adsorption, (c) cryogenic distillation, and (d) membrane separation (Figure 4) [39, 44]. Although various new methods were suggested for CO2 separation, Granite and Brien [45] reviewed some of the most novel methods for carbon dioxide separation from flue and fuel gas streams, such as use of electrochemical pumps and chemical looping for CO2 separation.

2.1. Absorption

Absorption stripping is an important technology for CO2 capture from fuel gas; in this technology desired component in mixed gases are dissolved in a solvent (bulk phase) [46]. The general scheme of this process is depicted in Figure 5.

The flue gas (containing CO2) is cooled (between 318 and 323 K), and fed to the absorption column (scrubber) where the solvent absorbs CO2. The CO2-rich solution is fed into a heater to increase the temperature of solution, then to a stripper column to release the CO2. The released CO2 is compressed, and the regenerated absorbent solution is cooled and recycled to the absorber column [47, 48].

Energy required for post-combustion CO2 capture is an important issue. Thus, recent studies suggest that reduction of the cost of this capture could be achieved by finding suitable solvents that could process larger amounts of CO2 for a given mass and require less energy for stripping stage [49, 50].

2.1.1. Solvents

In absorption process, flue gas is contacted with a liquid “absorbent” (or “solvent”), and CO2 is absorbed by this solvent [21]. However, the absorbent should have a suitable capacity for CO2 absorption, high kinetic rate for CO2 absorption, negligible vapor pressure, and high chemical and thermal stability and should be harmless for labor persons [5153].

The solvents used for CO2 absorption can be divided into two categories: physical and chemical solvents. Physical solvent processes use organic solvents to physically absorb acid gas components rather than reacting chemically, but chemical absorption depends on acid-base neutralization reactions using alkaline solvents [54, 55]. In the recent years, many studies have compared the performance of different solvents as listed in Table 2.


Group of solventsAdvantageDisadvantageApplicationReference

Physical
Dimethyl ether of polyethylene glycol (Selexol)(i) Require low energy for regeneration (less than 20% of the value for chemical absorbent)
(ii) Low vapor pressure, low toxicity, and less corrosive solvent
(i) Dependent on temperature and pressure; therefore they are not suitable for post-combustion process
(ii) Low capacity for CO2 absorption
Natural gas sweetening[29, 39, 57, 62, 63]
GlycolCapturing CO2 and H2S at higher concentration
Glycol carbonateSeparating CO2 from other gases
Methanol (Rectisol)CO2 removal from various streams
Fluorinated solvent(i) CO2 removal from various streams
(ii) Separating CO2 from other gases

Chemical
Alkanolamines: monoethanolamine (MEA), diethanolamine (DEA), and methyl diethanolamine (MDEA)(i) React rapidly
(ii) High selectively (between acid and other gases)
(iii) Reversible absorption process
(iv) Inexpensive solvent
(i) Low CO2 loading capacity
(ii) Solvent degradation in existence of SO2 and O2 in flue gas (concentrations must be less than 10 ppm and 1 ppm)
(iii) High equipment corrosion rate
(iv) High energy consumption
Important for removing acidic components from gas streams[58, 60, 61, 6466]
Amino acid and aqueous amino acid salt(i) The possibility of adding a salt functional group.
(ii) The nonvolatility of solvents
(iii) Having high surface tension
(iv) Having better resistance to degradation than other chemical solvents
(v) Better performance than MEA of the same concentration for CO2 absorption
Decreased performance in the presence of oxygenSuggested for CO2 separation from flue gases[65, 6769]
Ammonia(i) No degradation in the presence of SO2 and O2 in the flue gases
(ii) No corrosion effect
(iii) Require low energy to regeneration (1/3 that required with MEA)
(iv) Low costs with aqueous ammonia, respectively, 15% and 20% less than with MEA
(i) Reversible at lower temperatures (not suitable for post-combustion)
(ii) Production of solid products and their operating problems
(iii) Explosion of dry CO2-NH3 reaction in the high concentration of CO2 in the flue gas (explosive limit for NH3 gas is 15–28%)
Suggested for CO2 separation from flue gases[39, 70]
Ionic liquid (IL)(i) Very low vapor pressure
(ii) Good thermal stability
(iii) High polarity
(iv) Nontoxicity
Increased viscosity with CO2 absorptionSuggested for CO2 separation from flue gases[7174]
Aqueous piperazine (PZ)(i) Fast absorption kinetics (CO2 absorption rate with aqueous PZ is more than double that of MEA)
(ii) Low degradation rates for CO2 separation
(iii) Negligible thermal degradation in concentrated PZ solutions
(iv) Favorable equilibrium characteristics
(v) Very low heat of absorption (10–15 kCal/mol CO2), 80–90% energy required for aqueous amine system
Lower oxidative degradation of concentrated PZ (i.e., 4 times slower than MEA in the presence of the combination of Fe2+/Cr3+/Ni2+ and Fe2+/V5+)(i) Effective for treating syngas at high temperatures
(ii) Application of additional amine promoters for natural gas treating and CO2 separation from flue gases
[29, 66, 75, 76]

(1) Alkanolamines. Between various solvent groups, alkanolamines group is the most important and more used for CO2 separation. A major problem in the usage of amines for CO2 absorption is equipment corrosion, so Albritton et al. [56] examined corrosion rate of various amine solvents and suggested corrosion rate could reduce in the following order: monoethanolamine (MEA) > 2-amino-2-methyl-1-propanol (AMP) > diethanolamine (DEA) > methyl diethanolamine (MDEA).

On the other way, MEA can react more quickly with CO2 than MDEA, but MDEA has higher CO2 absorption capacity and requires lower energy to regenerate CO2 [39, 57, 58]. Thus, it can be concluded that MEA is one of the best amine solvents for CO2 separation. Idem et al. [59] reported substantial reduction in energy requirements and modest reduction in circulation rates for amine blends relative to the corresponding single amine system of similar total amine concentration. Wang et al. [57] found that when MEA and MDEA are mixed at the appropriate ratio, the energy consumption for CO2 regeneration is reduced significantly. Dave et al. [28] compared the performance of several amine solvents and ammonia solutions at various concentrations. They showed that 30 wt% AMP based process has the lowest overall energy requirement among the solvents considered in their study (30% MEA, 30% MDEA, 2.5% NH3, and 5% NH3) [28, 60].

Knudsen et al. [61] studies showed that it is possible to run the post-combustion capture plant continuously while achieving roughly 90% CO2 separation levels and CASTOR-2 (blended amine solvents), operated in pilot scale with lower steam requirement and liquid-to-gas ratio (L/G) than the conventional MEA solvent.

Besides alkanolamines, carbonate-bicarbonate buffers and hindered amines are used in the bulk removal of CO2 owing to the low steam requirement for its regeneration. Mitsubishi Heavy Industries and Kansai Electric have employed other patented chemical solvents—strictly hindered amines called KS-1, KS-2, or KS-3. The regeneration heat of KS solvents is said to be ~3 GJ/t CO2, that is, 20% lower than that of MEA with ~3.7 GJ/t CO2 [60, 64, 77]. Generally, the overall cost of amine absorption/stripping technology for CO2 capture process is 52–77 US$/ton CO2 [71].

(2) Amino Acid. Amino acids have the same functional groups as alkanolamines and can be expected to behave similarly towards CO2 but do not deteriorate in the presence of oxygen. Based on the results of tests, the aqueous potassium salts (composed of sarcosine and proline) are considered to be the most promising solvents. The most common amino acids used in the gas treating solvents are glycine, alanine, dimethyl glycine, diethyl glycine, and a number of sterically hindered amino acids [65, 67, 68].

Results of many research groups showed that these solvents are suitable for application in membrane gas absorption units, because these solvents have better performance and degradation resistance than other chemical solvents [78]. Amino acid salts formed by neutralization of amino acids with an organic base such as amine showed better CO2 absorption potential than amino acid salts from neutralization of amino acid salts from an inorganic base such as potassium hydroxide [79, 80]. Aronu et al. [69] studied the performance of amino acids neutralized with 3-(methylamino)propylamine (MAPA), glycine, β-alanine, and sarcosine. Their results indicated that sarcosine neutralized with MAPA has the best CO2 absorption performance. Its performance is also enhanced by promoting with excess MAPA [69].

(3) Ammonia. Since ammonia is a toxic gas, prevention of ammonia “slip” to the atmosphere is a necessity. Despite this disadvantage, chilled ammonia process (CAP) was used for CO2 separation (Figure 6). In the CAP, CO2 is absorbed in an ammoniated solution at a lower absorption temperature (275–283 K) that reduced ammonia emissions from the CAP absorber. Ammonium carbonate solution resulted in approximately 38% carbon regeneration compared to MEA solution [70, 81, 82].

(4) Aqueous Piperazine (PZ). Piperazine (PZ) is as an additive used for amine systems to improve kinetics of CO2 absorption, such as MDEA/PZ or MEA/PZ blends. Because PZ solubility in water is low, concentration of PZ is between 0.5 and 2.5 M. As indicated in Table 2, increasing the concentration of PZ in solution allows for increased solvent capacity and faster kinetic. The presence of potassium in solution increases the concentration of / in solution; therefore, solution has buffering property. These competing effects yield a maximum fraction of reactive species at potassium to piperazine ratio of 2 : 1 [75, 83, 84].

2.2. Adsorption

Adsorption operation can reduce energy and cost of the capture or separation of CO2 in post-combustion capture. To achieve this goal, it is necessary to find adsorbents with suitable properties. In general, CO2 adsorbent must have high selectivity and adsorption capacity and adequate adsorption/desorption kinetics, remain stable after several adsorption/desorption cycles, and possess good thermal and mechanical stability [51, 8588]. The adsorbents used for CO2 separation placed into two main categories: physical and chemical adsorbents.

2.2.1. Chemical Adsorption

Chemisorption is a subclass of adsorption, driven by a chemical reaction occurring at the exposed surface. Adsorption capacities of different chemical adsorbents are summarized in Table 3.


SorbentOperating temperature (K)Operating pressure (kPa)CO2 capture capacity (mol CO2/kg sorbent)Regeneration cycles, CO2 capture capacity remained after cycles (%)Reference

Mesoporous (MgO)2981011.83100[93]
CaO nanopods87310117.55061.1[94]
CaO derived from nanosized CaCO392310116.710022.2[93]
CaO-MgAl2O4 (spinel nanoparticles)9231019.16584.6[93]
Nano CaO/Al2O39231016.01561.7[93]
Lithium silicate nanoparticles8831015.77n.a.n.a.[93]
Nanocrystalline Li2ZrO3 particles8431016.18100[93]
CaO/Al2O39231016.02n.a.n.a.[93]
Lithium silicate993n.a.8.18n.a.n.a.[17]
Lithium zirconate6731005.0n.a.n.a.[93]
Lithium orthosilicate8731006.13n.a.n.a.[93]
Calcium oxide87310017.3n.a.n.a.[93]
Magnesium hydroxide47310343.0n.a.n.a.[93]
Mesoporous magnesium oxide3731002.27n.a.n.a.[93]
Lithium Silicate nano particles8731015n.a.n.a.[95]
HTI-HNa5731341.1095093.3[93]

A wide range of metals have been studied including [89](i)metal oxides: CaO, MgO,(ii)metal salts from alkali metal compounds: lithium silicate, lithium zirconate to alkaline earth metal compounds (i.e., magnesium oxide and calcium oxide),(iii)hydrotalcites and double salts.

In general, one mole of metal compound can react with one mole of CO2 with a reversible reaction. The process consists of a series of cycles where metal oxides (such as CaO) at 923 K are transformed into metal carbonates form (such as CaCO3) at 1123 K in a carbonation reactor to regenerate the sorbent and produce a concentrated stream of CO2 suitable for storage [90, 91].

Considerable attention was paid to calcium oxide (CaO) as it has a high CO2 adsorption capacity and high raw material availability (e.g., limestone) at a low cost. Lithium salts was recorded a good performance in CO2 adsorption, but it gained less focus due to its high production cost. Although double salts can be easily regenerated due to low energy requirement, their stability has not been investigated [93, 96].

The reaction of CO2 adsorption with Li2ZrO3 is reversible in the temperature range of 723–863 K. The capacity of lithium silicate (8.2 moL CO2/kg sorbent at 993 K) is larger than that of lithium zirconate (4.85 moL/kg sorbent) [17].

Hydrotalcite (HT) contains layered structure with positively charged cations balanced by negatively charged anions [97, 98]. Adsorption and final capacity of different adsorption/desorption cycles are listed in Table 3.

One way for improving CO2 adsorption efficiency is application of nanomaterials. Different nano-materials can be used for CO2 separation (Table 3). However, nanomaterials always have high production cost with complicated synthesis process such as carbon nanotubes and graphite nanoplatelets [99, 100].

The main disadvantage of chemical adsorbents is difficult regeneration process, and application of these adsorbents needs more studies for finding new adsorbents [88, 95].

2.2.2. Physical Adsorption

Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption. If the CO2 adsorption capacity of solid adsorbents reaches 3 mmoL/g, the required energy for adsorption will be less than 30–50% energy for absorption with optimum aqueous MEA [101]. The major physical adsorbents suggested for CO2 adsorption include activated carbons and inorganic porous materials such as zeolites [102, 103]. The adsorption capacities of various physical adsorbents are summarized in Table 4.


SorbentOperating temperature (K)Operating pressure (kPa)CO2 capture capacity (mol CO2/kg sorbent)Regeneration cycles, CO2 capture capacity remained after cycles (%)Reference

Activated carbon3031101.58n.a.n.a.[93]
AC (4% KOH)303300.55n.a.n.a.[93]
AC (EDA + EtOH)303300.53n.a.n.a.[93]
AC (4% KOH + EDA + EtOH)303300.64n.a.n.a.[45, 70, 79]
NiO-ACs2981012.227n.a.n.a.[104]
13X39315.1980.7n.a.n.a.[105]
5A39315.1980.38n.a.n.a.[105, 106]
4A39315.1980.5n.a.n.a.[105]
WEG-59239315.1980.6n.a.n.a.[105]
APG-II39315.1980.38n.a.n.a.[105]
Na-Y27310.1324.9n.a.n.a.[105]
Na-X373101.321.242n.a.[105]
NaKA373101.323.88n.a.[105]
NaX-h323101.322.522n.a.[105]
NaX-h373101.321.372n.a.[105]
Na-X-c323101.322.142n.a.[105]
Na-X-c373101.321.412n.a.[105]
Cs-X-h323101.322.422n.a.[105]
Cs-X-h373101.321.482n.a.[105]
Cs-X-c323101.321.762n.a.[105]
Cs-X-c373101.321.15n.a.n.a.[105]
MCM-412981000.62n.a.n.a.[93]
MCM-41 (DEA)3481001.26n.a.n.a.[93]
MCM-41 (50% PEI)3481002.52n.a.n.a.[93]
Activated carbon 303300.35n.a.n.a.[93]
MCM-41 (50% PEI) “molecular basket”3481002.95n.a.n.a.[93]
PE-MCM-412981000.50n.a.n.a.[93]
PE-MCM-41 (TRI)2981002.85n.a.n.a.[93]
PE-MCM-41 (DEA)3481002.36n.a.n.a.[93]
MCM-482981000.033n.a.n.a.[93]
MCM-48 (APTS)2981000.639n.a.n.a.[93]
MCM-412981000.62n.a.n.a.[93]
Molecular basket’
MCM-41 (50% PEI)
3481002.5896.0[93]
PE-MCM-41 (TRI)2981001.81094.4[93]
PE-MCM-41 (DEA)2981002.9796.6[93]
MWNT3031011.720n.a.[4, 93]
Unmodified [(Cu3(btc)2]*29818186.7n.a.n.a.[101]
CNT@ (Cu3(btc)2)298181813.52n.a.n.a.[101]
MIL-101**29810100.84n.a.n.a.[101]
MWCNT@MIL-10129810101.35n.a.n.a.[101]
MOF-229845453.20n.a.n.a.[107]
MOF-177298454533.5n.a.n.a.[107]
Zr-MOFs2739888.1n.a.n.a.[107]
Ca-Al LDH with 40613.55n.a.n.a.[108]
Pd-GNP nanocomposite29811115.1n.a.n.a.[109]
f-GNP29811114.3n.a.n.a.[109]
Pd-GNP nanocomposite29811114.5n.a.n.a.[109]
f-GNP29811113.8n.a.n.a.[109]
Pd-GNP nanocomposite29811114.1n.a.n.a.[109]
f-GNP29811113.3n.a.n.a.[109]
Ceria-based oxides doped with 5% gallium (III) 2981010.282n.a.n.a.[110]
Amine modified layered double hydroxides (LDHs)298–3531010.74–1.75n.a.n.a.[108]

 *Cu3(btc)2; btc: 1,3,5-benzene-tricarboxylate.
**MIL-101 or Cr3(F,OH)(H2O)2O[(O2C)C6H4(CO2)]3· H2O ( ) is one of the metal organic frameworks with Lewis acid sites that can be activated by removal of guest water molecules.

Coal is one of the adsorbents being suggested for CO2 separation. The total amount of CO2 that can be adsorbed in coal depends on its porosity, ash, and affinity for this molecule [111, 112]. Sakurovs et al. [113] showed that the ratio of maximum sorption capacity between CO2 and methane decreases with increasing carbon content. The average CO2/CH4 sorption ratio is higher for moisture-equilibrated coal and decreases with increasing coal rank (1.4 for high rank coals to 2.2 for low rank coals) [114116].

Activated carbon (AC) has a number of attractive characteristics, such as its high adsorption capacity, high hydrophobicity, low cost, and low energy requirement for regeneration [117119]. Activated carbons are inexpensive, insensitive to moisture, and easy for regeneration. These adsorbents have well developed micro- and mesopore structures that are suitable for high CO2 adsorption capacity at ambient pressure [120122].

However, activated carbon CO2/N2 selectivities (ca. 10) are relatively low; zeolitic materials offer CO2/N2 selectivities 5–10 times greater than those of carbonaceous materials. The adsorption capacity and selectivity of zeolites are largely affected by their size, porous diameter, charge density, and chemical composition of cations in their porous structures. The average value of heat adsorption on zeolites (36 kJ/moL) is larger than for activated carbon (30 kJ/moL), confirming the mentioned affirmation. Moreover, activated carbon can be regenerated easily and completely. Also its capacity did not decay after 10 consecutive processes cycles [122124].

Due to the increase in cost of raw materials, growing research interest has been focused on producing AC from agricultural wastes. Some of the agricultural wastes include the shells and stones of fruits, wastes resulting from the production of cereals, bagasse, and coir pith [100]. Rosas et al. [125] prepared hemp-derived AC monolith by phosphoric acid activation. The activated carbons from hemp stem are microporous materials and therefore suitable ones for hydrogen storage and CO2 capture [126].

Siriwardane et al. [127] studied CO2 adsorption on the molecular sieve 13X, 4A and activated carbon. The molecular sieve 13X showed better CO2 separation than molecular sieve 4A. At lower pressures (<50 psi), activated carbon had a lower CO2 separation than the molecular sieves, but adsorption was higher for activated carbon than molecular sieves at higher pressures [127, 128].

Liu et al. [129] indicated that zeolite 5A has higher volumetric capacities and less severe heat effect of the zeolite 13X. Chabazite zeolites were prepared and exchanged with alkali cations: Li, Na, K and alkaline-earth cations: Mg, Ca, Ba. Zhang et al. [130] studied the potential of these zeolites for CO2 separation from flue gas by vacuum swing adsorption. It was found that NaCHA and CaCHA hold comparative advantages for high temperature CO2 separation whilst NaX showed superior performance at relatively low temperatures [130]. In physical adsorption, the size and volume of the pores are important. Micropores are defined as pores, 2 nm in size, mesopores between 2 and 50 nm, and macropores, 50 nm in size. The micropores make better selective adsorption of CO2 over CH4 [131, 132].

Carbon nanotubes (CNTs) are the most famous among nano-hollow structured materials and their dimension ranges from 1 to 10 nm in diameter and from 200 to 500 nm in length [133]. Cinke et al. [134] indicated that purified single-walled carbon nanotubes (SWNTs) adsorbed CO2 better than unpurified SWNT. In addition, multiwalled carbon nanotubes (MWNTs) showed stability for 20 cycles of adsorption and regeneration [135].

More recently, nanosystems researchers have synthesized and screened a large number of zeolitic-type materials known as zeolitic imidazolate frameworks (ZIFs). CO2 capacities of the ZIFs are high, and selectivity against CO and N2 is good [136, 137]. The results of researchers (Burchell and Judkins [138], Dave et al. [28], and Yong et al. [139]) indicated that the CO2 adsorption efficiency of the honeycomb monolith is twice than activated carbon and 1.5 times greater than ZIF material [29]. Results of Kimber et al. [140] showed that CO2 selectivity of honeycomb monolithic composite decreased with increasing in burn-off.

Graphite nanoplatelets (GNP) were prepared by acid intercalation followed by thermal exfoliation of natural graphite. Functionalized graphite nanoplatelets (f-GNP) were prepared by further treatment of GNP in acidic medium. Palladium (Pd) nanoparticles were decorated over f-GNP surface by chemical method [109, 141, 142]. Adsorption capacity of this adsorbent is presented in Table 4.

The presence of several impurity gases (//H2O) greatly complicates the CO2 separation processes. Therefore, conventional adsorption-based CO2 separation processes rely on using a pretreatment stage to remove water, , and , which adds considerably to the overall cost. Also this prelayer can be used before the amine absorption column [143, 144]. Deng et al. [145] showed that the adsorption capacities follows the order SO2 > CO2 > NO > N2 on both zeolites (5A and 13X). Comparing two different adsorbents, the better separation efficiency can be achieved by 5A zeolite [145].

Zhang et al. [130] focused on the effect of water vapour on the pressure/vacuum swing adsorption process. The selected adsorbents in this study were CDX (an alumina/zeolite blend), alumina, and 13X zeolite as these adsorbents are either the prelayer for water adsorption or the main CO2 adsorption layer in the packed bed [130].

Metal-organic framework (MOF) materials are crystalline with two- or three-dimensional porous structures that can be synthesised with many of the functional capabilities of zeolites. Several MOFs have been proposed as adsorbents for CO2 separation processes, and among these Cu-BTC [polymeric copper (II) benzene-1,3,5-tricarboxylate] has proved to be dedicated with CO2 adsorption performances that are higher than those of typical adsorbents such as 13X zeolite [105, 107, 146, 147].

The MCM-41 material is one of the mesoporous products which was prepared by the hydrothermal method from mobil composition of matter (MCM) powders. Lu et al. [148] showed that mesoporous silica spherical particles (MSPs) can be synthesized using low-cost Na2SiO3 thus they can be cost-effective adsorbents for CO2 separation from flue gas [149, 150].

Layered double hydroxides (LDHs) have general formula with typically in the range between 0.10 and 0.33. These materials can be readily and inexpensively synthesized with the desired characteristics for a particular application such as CO2 adsorption [108, 151].

2.2.3. Adsorbent Modification

The role of CO2 as a weak Lewis acid is well established. Because of the nature of CO2, the surface of the physical adsorbents can be modified by adding basic groups, such as amine groups and metal oxides to improve CO2 adsorption capacity or selectivity [152154]. Three different methods for the production of these adsorbents were investigated: activation with CO2, heat treatment with ammonia gas (amination and ammoxidation), and heat treatment with polyethylenimine (PEI). However, it has been suggested that amine modification can produce better and cheaper CO2 adsorbents [24, 104, 155, 156].

Xu et al. [157, 158] designed selective “molecular basket” by grafting polyethylenimine (PEI) uniformly on MCM-41. CO2 adsorption capacity of the adsorbent was 24 times higher than MCM-41 and 2 times higher than PEI [93]. The addition of ammonium hydroxide resulted in the Zr-MOF with a slight lower adsorption of CO2 and CH4; however, the selectivity of CO2/CH4 is significantly enhanced [159, 160]. Results of Abid et al. [107] showed that the selectivity of CO2/CH4 on Zr-MOF is between 2.2 and 3.8, while for Zr-MOF-NH4 selectivity is between 2.6 and 4.3.

A nitrogen-rich carbon with a hierarchical micro-mesopore structure exhibited a high CO2 adsorption capacity (141 mg/g at 298 K, 1 atm), excellent separation efficiency (CO2/N2 selectivity is ca. 32), and excellent stability [161]. Plaza et al. [162] results showed that CO2 adsorption capacity of the DETA-impregnated alumina (≥2.3 mmoL/g) exhibited is the highest.

Amine modified layered double hydroxides (LDHs) have been prepared by several different methods. Park et al. [163] used dodecyl sulfate (DS) intercalated LDH as precursor and added (3-aminopropyl) triethoxysilane (APTS) together with N-cetyl-N,N,N-trimethylammonium bromide (CTAB) [164]. The highest adsorption capacity of amine modified LDHs for CO2 was achieved at 1.75 mmoL/g by MgAl N3 at 353 K and 1 bar. According to data in Table 4, this adsorbent has high CO2 capacity at high temperature; therefore, this adsorbent is suitable for post-combustion CO2 capture [108].

Wang et al. [114] reported that porous carbons with well-developed pore structures were directly prepared from a weak acid cation exchange resin (CER) by the carbonization of a mixture with Mg acetate in different ratios [108]. The main parameters of this adsorbent (such as CO2 capacity) are indicated in Table 4.

Shafeeyan et al. [165] prepared different adsorbents based on the central composite design (CCD) with three independent variables (i.e., amination temperature, amination time, and the use of preheat treated (HTA) or preoxidized (OXA) sorbent as the starting material). They demonstrated that the optimum condition for obtaining an efficient CO2 adsorbent is using a preoxidized sorbent and amination at 698 K for 2.1 h [165].

Table 4 compares CO2 adsorption capacities and stability of different absorbents, which were studied for post-combustion CO2 capture.

2.2.4. Different Cycles for CO2 Adsorption

Five different regeneration strategies were demonstrated in a single-bed CO2 adsorption unit: pressure swing adsorption (PSA), temperature swing adsorption (TSA), vacuum swing adsorption (VSA), electric swing adsorption (ESA), and a combination of vacuum and temperature swing adsorption (VTSA). The difference between these technologies is based on the strategy for regeneration of adsorbent after the adsorption step (Figure 7). In PSA applications, the pressure of the bed is reduced. VSA is preferred to the special PSA application where the desorption pressure is below atmospheric, whereas in TSA, the temperature is raised while pressure is maintained approximately constant, and in ESA the solid is heated by the Joule effect [166169].

For the single-bed cycle configurations, the productivity and CO2 recovery followed the sequence:

The performances of PSA, TSA, VSA, VTSA, and ESA processes for CO2 separation are reported in Table 5. Since application of adsorption process for CO2 capture in industrial scale is very important, in recent years some researches have been focused on this area; for example, Lucas et al. [170] studied the scale-up CO2 adsorption with activated carbon.


ProcessCO2 feed molar fraction
(%) (other gases present)
CO2 purity (%)CO2 recovery (%)

PSA13 (O2)99.569
TSA109581
TSA17n.a.40
ESA1023.3392.57
VSA159090
VSA17n.a.87
3-bed VSA1290–9560–70
PSA/VSA2058–6370–75
PSA/VSA15 (H2O)5987
VPSA1799.5–99.834–69
VPSA16 (O2)9953–70
PTSA109990
2-bed-2-step PSAn.a.1890
VTSA17n.a.97

2.3. Cryogenic Distillation

Cryogenic method utilized low temperatures for condensation, separation, and purification of CO2 from flue gases (freezing point of pure CO2 is 195.5 K at atmospheric pressure). Therefore, under the cryogenic separation process, the components can be separated by a series of compression, cooling, and expansion steps. It enables direct production of liquid CO2 that can be stored or sequestered at high pressure via liquid pumping [171173].

The advantages of this technology can be summarized as follows [6, 8, 174].(1)Liquid CO2 is directly produced, thus making it relatively easy to store or send for enhanced oil recovery.(2)This technology is relatively straightforward, involving no solvents or other components.(3)The cryogenic separation can be easy scaled-up to industrial-scale utilization.

The major disadvantages of this process are the large amount of energy required to provide the refrigeration and the CO2 solidification under a low temperature, which causes several operational problems [176178]. Therefore, more studies are required for reducing the cost of cryogenic separation.

Clodic et al. [179] indicated that the energy requirement for cryogenic process was in the range of 541–1119 kJ/kg CO2. Zanganeh et al. [6] have constructed a pilot-scale CO2 capture and compression unit (CO2 CCU) that can separate CO2 as liquid phase from the flue gas of oxy-fuel combustion. Their results showed that cryogenic is the most cost effective when the feed gas is available at high pressure. Therefore, cryogenic is not suitable for post-combustion and it is well effective for separation stream with high CO2 concentration such as oxy-fuel combustion. Amann et al. [180] reported that conversion of O2/CO2 cycle was more efficient than amine scrubbing but more difficult to implement because of the specific gas turbine.

Xu et al. [175] studied a novel CO2 cryogenic liquefaction and separation system (Figure 8). In this system, two-stage compression, two-stage refrigeration, two-stage separation, and sufficient recovery of cryogenic energy were adopted. The energy consumption for CO2 recovery is only 0.395 MJ/kg CO2. Furthermore, this CO2 cryogenic separation system is more suitable for gas mixtures with high initial pressure and high CO2 concentration [175].

Song et al. [181] developed a novel cryogenic CO2 capture system based on Stirling coolers (SC). The operation of Stirling cooler contains four processes: isothermal expansion, refrigeration under a constant volume, isothermal compression, and heating under a constant volume condition. This novel cryogenic system can condense and separate H2O and CO2 from flue gas. Their results showed that under the optimal temperature and flow rate, CO2 recovery of the cryogenic process can reach 96% with 1.5 MJ/kg CO2 energy consumption.

Tuinier et al. [182] exploited a novel cryogenic CO2 capture process using dynamically operated packed beds (Figure 9). By the developed process, above 99% of CO2 could be recovered from a flue gas containing 10 vol.% CO2 and 1 vol.% H2O with 1.8 MJ/kg CO2 energy consumption [181].

Chiesa et al. [183] proposed an advanced cycle that a molten carbonate fuel cell (MCFC) was used to separate the CO2 from the gas turbine exhaust of a natural gas fired combined cycle power plant. In this cycle, gas turbine flue gases actually are used as cathode feeding for MCFC. While CO2 is moved from the cathode to anode side, concentrate CO2 in the anode exhaust. Then the CO2 is concentrated on the anode side of MCFC allowing to easily treat this spent fuel stream in a cryogenic process to split combustible species (routed back to gas turbine combustor) from the CO2 addressed to storage (Figure 10) [183].

2.4. Membrane Separation

The membrane separation method is a continuous, steady-state, clean and simple process, and ideal as an energy-saving method for CO2 recovery. Gas separation using membranes is a pressure-driven process. Due to the low pressure of flue gases, driving force is too low for membrane processes in post-combustion (low pressure and low CO2 concentration). Membrane processes offer increased separation performances when CO2 concentration in the feed mixture increases [184186].

Membrane separation processes have several advantages over other CO2 separation technologies. The required process equipment is very simple, compact, relatively easy to operate and control, clear process and easy to scale up [187, 188].

The energy required for the recovery of CO2 by membrane processes depends on the target purity, flue gas composition, and membrane selectivity for CO2. Howevre membrane processes require too much energy for post-combustion CO2 capture; therefore, low partial pressure of CO2 in the flue gas is a possible disadvantage for the application of membranes. Another disadvantage of membrane process is that the membrane selectivity for the separation of CO2 from and is very low. Membrane process is not useful for high flow rate applications [189191].

Therefore, the useful membrane for post-combustion CO2 capture should have some specification such as [192, 193](i)high CO2 permeability,(ii)high selectivity for CO2 separatation from flue gases,(iii)high thermal and chemical stability,(iv)resistant to plasticisation,(v)resistant to aging,(vi)cost effective,(vii)low production cost for different membrane modules.

Many efforts have been made to find new material with suitable properties (Table 6).


NameFeed pressure (atm)Temperature (K) (CO2) (barrer) (N2) (barrer)α (CO2/N2)Reference

Ion-exchanged zeolites membrane
Y (FAU) with α-A12O3 supportn.a.308n.a.n.a.139[197]
ZSM-5 (MFI) with α-A12O3 supportn.a.n.an.a.n.a.3[197]
ZSM-5/polymeric silican.a.3731140n.a.[198]
Stainless steel support infiltrated with a eutectic molten carbonate mixture (Li/Na/K)n.a.9237780n.a.16[199]
Y-typen.a.303–40335900–89800n.a.5[200]
NaYn.a.313359000n.a.5[200]
Li(20%)Yn.a.308210000n.a.3[200]
K(30%)Yn.a.308269000n.a.9[200]
K(62%)Yn.a.313150000n.a.6[200]
Rb(38%)Yn.a.313150000n.a.3[200]
Cs(32%)Yn.a.31359900n.a.2[200]
20% K2CO3, 80% Li2CO3n.a.7982990n.a.4[199]
MCM-48n.a.n.a.10200n.a.0.8[189]
PEI-modified MCM-48n.a.36314100n.a.80[201]
Chitosan1.75295100n.a.100[192]
Swollen chitosan 1.5383482n.a.250[192]
Arginine salt-chitosan 1.53831500n.a.852[194]

Polyacetylene
Polytrimethyl-prop-1-ynyl-silanen.a.29819000180010.6[193]
Poly-3,3-dimethyl-but-1-ynen.a.2985604313.0[193]
Poly-1-(dimethyl-trimethylsilanylmethyl-silanyl)-propyne n.a.2983102114.8[193]
Poly-1-[dimethyl-(2-trimethylsilanyl-ethyl)-silanyl]-propynen.a.2981501410.7[193]
Polytrimethyl-(2-prop-1-ynyl-phenyl)-silanen.a.2982902412.1[193]
Poly-1-prop-1-ynyl-2-trifluoromethyl-benzenen.a.2981307.317.8[193]
Poly-dec-2-ynen.a.298130149.3[193]
Poly-1-chloro-dec-1-ynen.a.2981701610.6[193]
Poly-1-chloro-oct-1-ynen.a.2981301111.8[193]
Poly-1-chloro-hex-1-ynen.a.2981801018[193]
Polyhexyl-dimethyl-prop-1-ynyl-silanen.a.298714.316.5[193]
Polytrimethyl-(1-pentyl-prop-2-ynyl)-silanen.a.2981208.713.8[193]
Polyhexyl-dimethyl-(1-propyl-prop-2-ynyl)-silanen.a.298706.311.1[193]
Polyprop-1-ynyl-benzenen.a.298252.211.4[193]
Polybut-1-ynyl-benzenen.a.298404.58.9[193]
Polyoct-1-ynyl-benzenen.a.298485.58.7[193]
Polychloroethynyl-benzenen.a.298231.023.0[193]
Poly-1-ethynyl-2-methyl-benzenen.a.298153.05.0[193]
Polydimethyl-phenyl-(1-propyl-prop-2-ynyl)-silanen.a.298542.521.6[193]

Polyarylene ether
6FPT-6FBPA1.030825.292.1811.6[193]
6FPT-BPA 1.0 35 1.030818.531.3713.5[193]
6FPPy-6FBPA 1.030829.462.3912.32[193]
6FPPy-BPA 1.030821.441.7012.6[193]

Fixed site carrier membrane (FSCM)
Polarix2.0303107n.a.50[202]
PAAM-PVA/PS102982.4 × 105n.a.80[203]
PVAm/PVA blend1.452982.12 × 106n.a.145[204]
PEI/PVAn.a.298104n.a.230[184]
PDMA/PS22963 × 105n.a.53[143]

Polyamine
PA1210308120n.a.51[152]
PA61030866n.a.56[152]
Polyethyleneimine/polyvinyl butyral0.132318380n.a.32[193]
Poly[(2-N,N-dimethyl) aminoethyl methacrylate]0.237298370n.a.111[193]
Poly(vinylbenzyltrimethyl ammonium fluoride)0.224296113n.a.983[193]
Polyethyleneimine/poly(vinyl alcohol)0.355298650n.a.235[193]
PEI/PDMS/PEBA1657/PDMS52981.57 × 106n.a.64[205]

Polyarylate
BPA/IA 103085.40.2422.5[193]
BPA/tBIA 1030824.21.2020.2[193]
HFBPA/IA 1030819.11.1117.2[193]
HFBPA/tBIA 1030856.93.8814.7[193]
PhTh/IA 103086.740.2824.1[193]
PhTh/tBIA 1030823.81.0921.8[193]
FBP/IA 1030812.40.5712.4[193]
FBP/tBIA 1030836.81.9319.1[193]
TBBPA/IA 103084.930.1827.4[193]
TBBPA/tBIA 1030821.50.9023.9[193]
TBHFBPA/IA 1030825.61.0723.9[193]
TBHFBPA/tBIA 1030885.14.4719.0[193]
TBPhTh/IA 103088.340.2928.8[193]
TBPhTh/tBIA 1030830.61.2823.9[193]
TBFBP/IA1030820.40.7029.1[193]
TBFBP/tBIA 1030869.52.9423.6[193]
DMBPA/IA 103081.240.06319.7[193]
DMBPA/Tbia103088.00.3920.5[193]
TMBPA/IA 1030812.00.5820.7[193]
TMBPA/tBIA1030844.62.5217.7[193]
DiisoBPA/IA103085.160.2719.1[193]
DiisoBPA/tBIA 1030816.11.0814.9[193]
DBDMBPA/IA 103085.450.2224.8[193]
PhAnth/IA 103089.00.3625[193]
PhAnth/tBIA1030825.91.3519.2[193]
FBP/IA 1030812.40.5721.8[193]
FBP/tBIA 1030836.81.9319.1[193]

Polycarbonates
PC1–103086.0–6.80.289–0.3221[193]
TMPC1–1030817.58–18.61.018.6[193]
TCPC13086.660.3618.5[193]
TBPC13084.230.18223.2[193]
HFPC10308241.615.0[193]
TMHFPC 103081117.415.0[193]
NBPC 103089.10.4719.4[193]
PCZ 103082.20.10521.0[193]
PC-AP23089.480.36126.3[193]
FBPC230815.10.59225.5[193]

Polyethylene oxide
PEO7.82988.10.07140[193]
PEO4.4–14.6308–31813–520.24–155[193]
PEO-PBTn.a.308120260[193]
EO/EM/AGE (80/20/2)n.a.30877316.846[193]
EO/EM/AGE (77/23/2.3)n.a.30868015.544[193]
EO/EM/AGE (96/4/2.5)n.a.30858012.148[193]

Polyimides
Amine modified polyimide0.368308186n.a.38[193]
PMDA-BAPHF 6.830811.80.6617.8[193]
PMDA-3BAPHF 6.83086.120.2921.1[193]
PMDA-4,4′-ODA6.8–103081.14–2.70.049–0.123.3[193]
PMDA-3,3′-ODA6.8–103080.50–3.550.018–0.14524.5–27.8[193]
PMDA-MDA 103084.030.2020.2[193]
PMDA-IPDA1030829.71.5019.8[193]
PMDA-BAPHF1030817.60.94318.7[193]
PMDA-BATPHF 1030824.61.5016.4[193]
BPDA-BAHF 1–10298–30823–27.70.6–1.3919.9–37.7[193]
BPDA-mTrMPD 103081378.4216.3[193]
BTDA-4,4-ODA 103080.6250.023626.5[193]
BTDA-BAPHF 103084.370.19522.4[193]
BTDA-BAHF 1030810.10.4522.4[193]
BTDA-mTrMPD 1030830.91.5519.9[193]
BTDA-BAFL 1298150.3938.5[193]
PI103082.000.06331.7[193]
oMeCat-durene 1303270.8333[193]
mMeCat-durene1303200.5934[193]
DMeCat-durene1303632.0531[193]
mtBuCat-durene 1303712.5528[193]
oMeptBuCat-durene 1303672.527[193]
TMeCat-durene 13032008.125[193]
mMetCat-MDA1303220.6534[193]
mtBuCat-MDA 1303632.229[193]
TMeCat-MDA 13031103.830[193]
TMeCat-TMB 1303391.233[193]
DBuCat-TMB 1303954.919[193]
mtBuCat-DMOB 13036.70.2132[193]
TMeCat-6FiPDA 1303541.928[193]
6F 3n.a.1145.819.6[193]
TMMPD 3n.a.60035.117.1[193]
IMDDM 3n.a.19610.818.1[193]
ODA 3n.a.250.9725.8[193]
Matrimid 5218103086.50.2525.6[193]

6FDA-based polyimides
6FDA-pPDA1030815.30.8019.12[193]
6FDA-pDiMPDA1030342.72.6716.0[193]
6FDA-durene1030844035.6012.4[193]
6FDA-durene 1030345635.5012.85[193]
6FDA-mPDA 6.8–103088.23–9.200.36–0.44720.6–22.7[193]
6FDA-mMPDA 6.8–1030340.1–42.52.12–2.2417.9–20.1[193]
6FDA-mTrMPDA 1030843131.613.6[193]
6FDA-DATr 6.830328.631.3121.9[193]
6FDA-DBTF 6.830821.641.1718.5[193]
6FDA-PHDoeP 6.83038.594.501.91[193]
6FDA-PEPE 6.83086.880.25527.0[193]
6FDA-PBEPE 6.83032.500.09925.3[193]
6FDA-PMeaP 6.83082.410.08628.0[193]
6FDA-3,4′ODA103036.110.25923.6[193]
6FDA-APAP 1030810.70.47322.6[193]
6FDA-pp′ODA 1030316.70.73322.8[193]
6FDA-BAPHF 1030819.10.98119.5[193]
6FDA-BATPHF 1030322.81.3017.5[193]
6FDA-BAHF 1030851.23.1116.5[193]
6FDA-1,5-NDA 10308231.121[193]
6FDA-durene 24 h amidation10n.a.11.61.338.75[193]
6FDA-durene/mPDA (50/50)10n.a.84.65.1816.4[193]
6FDA-durene/mPDA (50/50) 4 h amidation10n.a.54.93.3816.2[193]
6FDA-durene/mPDA (50/50) 6 h amidation10n.a.49.13.2715.0[193]
6FDA-durene/mPDA (50/50) 12 h amidation10n.a.46.02.9415.6[193]
6FDA-durene/mPDA (50/50) 24 h amidation 10n.a.36.02.0617.5[193]
6FDA-durene/mPDA (50/50) 48 h amidation 10n.a.24.51.3817.8[193]
6FDA-FDA/HFBAPP (1/1) 1.1 kg/cm2303465.019.923.4[193]
6FDA-ODA 10308230.8327.7[193]
6FDA-4,4-ODA 6.830322.00.9423.4[193]
6FDA-MDA 10308190.8123.5[193]
6FDA-4BDAF 6.8303190.9819.4[193]
6FDA-3,3′-ODA 6.83082.10.1021[193]
6FDA-3BDAF 6.83036.30.2426.3[193]
6FDA-IPDA 10308–32824.3–27.40.87–1.3919.7–27.9[193]
6FDA-DAF 10308–32819.5–21.30.81–1.1518.5–24.1[193]
PI-11303321.422.9[193]
PI-3 130336016.521.8[193]
PI-4 1303622.425.8[193]
PI-5 13031907.326.0[193]
6FDA-BAFL 1298983.329.7[193]

Poly(phenylene oxide)
PPO (hollow fiber)430810621[205]
PPS1.53081.600.04634.8[193]
PDMPO 1.530865.53.518.7[193]
PDPPO1.530839.91.526.6[193]
PDMPO 6.89129590.03.724.3[193]
PDMPO (20.0% brominated)6.89129593.63.824.6[193]
PDMPO (37.4% brominated) 6.89129597.13.726.2[193]
PDMPO (60.0% brominated) 6.891295159.98.020.0[193]

Polypyrrole
6FDA-TAB 1030854.02.620.8[193]
6FDA-TADPO1030827.61.223.0[193]
BBL103080.120.00346.3[193]

Polysulfones
PSF 103085.60.2522.4[193]
TMPSF 10308211.0619.8[193]
HFPSF 10308120.6717.9[193]
TMHFPSF 10308724.018[193]
PSF-F 103084.50.2022.5[193]
PSF-O 103084.30.2021.5[193]
PSF-P 103086.80.3221.3[193]
TMPSF-F 103085.50.619.0[193]
TMPSF-P1030813.20.5723.2[193]
BIPSF 103085.60.2423.3[193]
TMBIPSF1030831.81.2126.3[193]
1,5-NPSF 103081.60.05728.1[193]
2,6-NPSF 103081.50.05129.4[193]
2,7-NPSF103081.80.07424.3[193]
DMPSF 103082.10.09123.1[193]
HMBIPSF1030825.51.223.3[193]
DMPSF-Z 103081.40.05724.6[193]
PSF-AP 23088.120.27829.2[193]
FBPSF 230813.80.48428.5[193]
PSF-M 13082.80.1125.5[193]
TMPSF-M 103087.00.2825.0[193]
PSF-BPFL 1308100.2540[193]
3,4′-PSF 13081.50.06622.7[193]
1,3-ADM PSF353087.20.3321.8[193]
2,2-ADM PSF 353089.50.4620.6[193]
PSF (6% Br, 92% CCSiMe3) 130836.52.117.4[193]
PSF (3% Br, 47% CCSiMe3) 130818.51.2414.9[193]
PSF (21% Br, 77% CCSiMe3) 130828.21.716.6[193]
PSF (5% Br, 45% CCSiMe3) 130816.40.918.2[193]
PSF 13085.60.2522.4[193]
PSF-s-HBTMS 1308210.9622.2[193]
PSF-o-HBTMS 1308703.2921.3[193]
PSF-CH2-TMS 1308180.9518.9[193]
EM3 1308291.322[193]
EM213086.20.2426[193]
EM1 13084.80.1630[193]
SM3 (degree of substitution = 2.0) 1308180.7723[193]
SM3 (degree of substitution = 1.0) 1308100.3826[193]
SM1 13085.10.1730[193]
PPSF 13083.20.1032[193]
RM3 1308271.914[193]
RM2 13086.70.6011[193]
RM1 13086.90.6111[193]
HFPSF 130812.00.6717.9[193]
HFPSF-o-HBTMS 13081055.6318.6[193]
HFPSF-s-TMS 1308412.020[193]
HFPSF-o-TMS 1308844.718[193]
HFPSF-TMS 13081106.318[193]
TM6FPSF 1308724.018[193]
TM6FPSF-s-TMS 1308965.219[193]
TMPSF-TMS 1308321.5121.3[193]
TMPSF-s-TMS 130866.33.0721.6[193]
TMPSF-HBTMS 1308723.3621.4[193]

Other membranes
HQDPA-PDA 73030.5980.01637.4[193]
HQDPA-PDA 73731.700.11115.3[193]
HQDPA-DBA 73030.6830.01545.5[193]
HQDPA-DBA 73732.100.12516.8[193]
HQDPA-MDBA 73031.180.03434.7[193]
HQDPA-MDBA 73732.370.16014.8[193]
HQDPA-EDBA 73032.260.07729.4[193]
HQDPA-EDBA 73734.180.29214.3[193]
12H53084.60.2121.9[193]
6H6F 53088.60.4419.5[193]
6F6H 53088.90.4221.2[193]
12F 530812.90.7617.0[193]
PBK 103083.30.1325.4[193]
PBK-S 103083.270.1129.7[193]
PBSF 1030810.80.4723.0[193]
PES/PI43081.15 × 105n.a.30[193]
PPES n.a.2730.920.02734[193]
PPESK n.a.2730.750.04218[193]
20 percent DEA immobilized in 25.4 μm microporous polypropylene supports0.16–1.67298974–4825n.a.56–276[200]

Copolymers and polymer blend
PEBA 2533 (hollow fiber)6.8273260n.a.32[206]
PEBA/PSF composite3.42736.1 × 105n.a.30[206]
COPNAn.a.3732990n.a.14[200]
Pebaxn.a.30373n.a.15.6[207]
Pebax/PEG10n.a.30375n.a.15.8[207]
Pebax/PEG20n.a.30380n.a.15.9[207]
Pebax/PEG30n.a.303105n.a.15.1[207]
Pebax/PEG40n.a.303132n.a.15.1[207]
Pebax/PEG50n.a.303151n.a.15.5[207]
Pebax/PEG-DME10n.a.303123n.a.44[208]
Pebax/PEG-DME20n.a.303206n.a.45[208]
Pebax/PEG-DME30n.a.303300n.a.46[208]
Pebax/PEG-DME40n.a.303440n.a.42[208]
Pebax/PEG-DME50n.a.303606n.a.43[208]
6FDA-TAB 1030854.02.819.3[193]
6FDA/PMDA-TAB (50 : 50) 1030815.80.7022.6[193]
6FDA/PMDA-TAB (25 : 75) 103083.130.09831.9[193]
6FDA/PMDA-TAB (10/90) 103081.110.03630.8[193]
6FDA-TAB/DAM (75/25) 330873.73.123.8[193]
6FDA-TAB/DAM (50/50)33081556.623.5[193]
6FDA-DAM 330837029.512.5[193]
6FDA/TMPDAn.a.30840023.517.02[193]
6FDA/PMDA (1 : 6)-TMMDA (CH2Cl2 cast) 1030818711.716.0[193]
6FDA/PMDA (1 : 6)-TMMDA (NMP cast) 103081448.7616.4[193]
6FDA/PMDA (1 : 6)-TMMDA (DMF cast) 1030888.65.1617.2[193]
MDI-BPA/PEG (75) 2308310.7044[193]
MDI-BPA/PEG (80) 2308481.047[193]
MDI-BPA/PEG (85) 2308591.2049[193]
L/TDI (20)-BPA/PEG (90) 2308470.9251[193]
L/TDI (40)-BPA/PEG (85) 2308350.7248[193]
IPA-ODA/PEO3 (80) 2308581.153[193]
BPDA-pp′ODAn.a.30318000n.a.31[155]
BPDA-ODA/DAT (oxidized)n.a.308599n.a.40[155]
BPDA-ODA/DABA/PEO1 (75) 23082.70.04856[193]
BPDA-mDDS/PEO1 (80) 23083.80.06658[193]
BPDA-ODA/DABA/PEO2 (70) 2308140.2557[193]
BPDA-ODA/DABA/PEO2 (80) 2308360.6456[193]
BPDA-ODA/PEO3 (75) 2308751.452[193]
BPDA-mDDS/PEO3 (75) 2308721.453[193]
BPDA-mPD/PEO4 (80) 2308811.554[193]
BPDA-ODA/PEO4 (80) 23081172.351[193]
PMDA-ODA/DABA/PEO1 (80) 2308140.2752[193]
PMDA-ODA/PEO2 (75) 2308400.7454[193]
PMDA-mPD/PEO3 (80) 2308992.050[193]
PMDA-APPS/PEO3 (80) 23081593.151[193]
PMDA-APPS/PEO4 (70) 23081362.653[193]
PMDA-mPD/PEO4 (80) 23081512.952[193]
PMDA-ODA/PEO4 (80) 23081673.252[152]
PMDA-pDDS/PEO4 (80) 23082384.949[152]
PMDA/BTDA-BAFL (50 : 50) 1298431.333[193]
PMDA/BTDA–BAFL (90 : 10) 12981303.834[193]
BPDA-BAFL/HMDA (50 : 50) 12980.540.01439[193]
PPES n.a.2980.920.02734[193]
PPES/PPEK (3 : 1) n.a.2982.940.07440[193]
PPES/PPEK (1 : 1) n.a.2984.120.08946[193]
PPES/PPEK (1 : 3) n.a.2982.060.02639[193]
PPES/PPEK (1 : 4) n.a.2981.770.05234[193]
PPEK 18n.a.2980.750.04218[193]
HQDPA-DPA/MDPA 73030.9570.02341.2[193]
HQDPA-DPA/MDPA73732.340.14715.9[193]
HQDPA-DPA/EDPA 73031.3340.03637.6[193]
HQDPA-DPA/EDPA 73733.250.20715.7[193]
PI 103082.000.06331.7[193]
PI/10PS 103082.330.08527.4[193]
PI/15PS 103082.320.0925.8[193]
PI/20PS 103082.900.913.19[193]
PI/25PS 103084.290.914.71[193]
PI/10PSVP 103083.580.1328.4[193]
PI/15PSVP 103083.710.1426.5[193]
PI/20PSVP 103085.650.1538.4[193]
PI/25PSVP 103086.551.554.31[193]
NTDA-BDSA (30)/CARDO/ODA 3303701.741[193]
NTDA-BDSA (30)/CARDO]33031644.536[193]
NTDA-BDSA (30)/BAPHF 3303230.6436[193]
NTDA-BDSA (30)/ODA 33035.20.152[193]
6FDA-FDA/HFBAPP (1/1)1.1 kg/cm230346519.923.4[193]
6FDA-durene/pPDA (80/20) 1030823016.8813.62[193]
6FDA-durene/pPDA (50/50) 103081267.7416.28[193]
6FDA-durene/pPDA (20/80) 1030859.262.8121.09[193]
6FDA-durene/3,3′-DDS (75/25) 1030884.75.9114.3[193]
6FDA-durene/3,3′-DDS (50/50) 1030819.81.0918.2[193]
6FDA-durene/3,3′-DDS (25/75) 103085.120.2619.7[193]
6FDA-3,3′-DDS 103081.840.0822.7[193]
6FDA-6FpDA-DABA-12.5 430834.02.0116.9[193]
6FDA-6FpDA–DABA-12.5 annealed430870.84.5015.7[193]
6FDA-6FpDA-DABA-12.5 (22.5% TMOS) 430830.91.7018.2[193]
6FDA-6FpDA-DABA-12.5 (22.5% TMOS) annealed 430847.63.1615.1[193]
6FDA-6FpDA-DABA-12.5 (15.0% MTMOS) 430844.02.5317.4[193]
6FDA-6FpDA-DABA-12.5 (15.0% MTMOS) annealed 43081107.0715.6[193]
6FDA-6FpDA-DABA-12.5 (15.0% PTMOS) 4 35430832.31.8017.9[193]
6FDA-6FpDA-DABA-12.5 (15.0% PTMOS) annealed 430891.85.5916.4[193]
6FDA-6FpDA-DABA-12.5 (22.5% PTMOS) 430830.71.8816.3[193]
6FDA-6FpDA-DABA-12.5 (22.5% PTMOS) annealed 430890.95.8715.5[193]
6FDA-6FpDA-DABA-25430820.31.2016.9[193]
6FDA-6FpDA-DABA-25 annealed430877.34.8515.9[193]
6FDA-6FpDA-DABA-25 (22.5% TMOS) 430815.71.0614.8[193]
6FDA-6FpDA-DABA-25 (22.5% TMOS) annealed430879.84.8716.4[193]
6FDA-6FpDA-DABA-25 (15.0% MTMOS)430816.61.0715.5[193]
6FDA-6FpDA-DABA-25 (15.0% MTMOS) annealed430881.15.0716.0[193]
6FDA–6FpDA-DABA-25 (22.5% MTMOS)430816.61.0715.5[193]
6FDA-6FpDA-DABA-25 (22.5% MTMOS) annealed430860.13.83715.7[193]
6FDA-6FpDA-DABA-25 (15.0% PTMOS) 430818.40.9419.6[193]
6FDA-6FpDA-DABA-25 (15.0% PTMOS) annealed 43081046.2516.6[193]
6FDA-6FpDA-DABA-25 (22.5% PTMOS) 430819.10.9819.5[193]
6FDA-6FpDA-DABA-25 (22.5% PTMOS) annealed 43081046.2516.6[193]
Poly(5 : 5 BPA/BN) 53085.710.1930.1[193]
Poly(7 : 3 BPA/BN) 53084.620.1628.9[193]

Cross-linking polymers
Poly(ethylene oxide-co-epichlorohydrin) (1 : 1) 1.1% 30029815.02.36.52[193]
Poly(ethylene oxide-co-epichlorohydrin) (1 : 1) 2% 30029814.91.014.9[193]
Poly(ethylene oxide-co-epichlorohydrin) (1 : 1) 5% 30029816.10.532.2[193]
DM14/MM9 (100/0) 0.967298450.6668[193]
DM14/MM9 (100/0) 0.9673231072.838[193]
DM14/MM9 (90/10) 0.967298620.9069[193]
DM14/MM9 (90/10) 0.9673231333.439[193]
DM14/MM9 (70/30) 0.967298961.566[193]
DM14/MM9 (70/30) 0.9673231955.436[193]
DM14/MM9 (50/50) 0.9672981442.2564[193]
DM14/MM9 (50/50) 0.9673232607.236[193]
DM14/MM9 (30/70) 0.9672982103.363[193]
DM14/MM9 (30/70)0.96732335010.633[193]
DB30/MM9 (100/0) 0.967298931.563[193]
DB30/MM9 (100/0) 0.9673232005.735[193]
DB30/MM9 (90/10) 0.9672981051.664[193]
DB30/MM9 (90/10) 0.9673232105.836[193]
DB30/MM9 (70/30) 0.9672981412.167[193]
DB30/MM9 (70/30) 0.9673232707.735[193]
DB30/MM9 (50/50) 0.9672981792.962[193]
DB30/MM9 (50/50) 0.9673233309.734[193]
DB30/MM9 (30/70) 0.9672982504.260[193]
DB30/MM9 (30/70) 0.96732341012.433[193]
DM9/MM9 (90/10)0.96729818.30.368[193]
DM9/MM9 (90/10) 0.967323511.338[193]
DM23/MM9 (90/10) 0.9672981452.266[193]
DM23/MM9 (90/10) 0.9673232907.638[193]
DB10/MM9 (90/10) 0.9672986.70.1161[193]
DB10/MM9 (90/10) 0.967323270.7934[193]
DB69/MM9 (90/10) (cooling) 0.9672982404.356[193]
DB69/MM9 (90/10) (cooling) 0.96732351014.236[193]
DB69/MM9 (90/10) (heating) 0.967298981.662[193]
DB69/MM9 (90/10) (heating) 0.96732340011.435[193]
DM14/MM23 (30/70) (cooling) 0.9672982403.962[193]
DM14/MM23 (30/70) (cooling) 0.9673234201235[193]
DM14/MM23 (30/70) (heating) 0.9672982504.062[193]
Matrimid 5218 103086.50.2525.6[193]
Matrimid 5218, 1-day cross-linking 103087.40.2925.6[193]
Matrimid 5218, 3-day cross-linking103086.00.2425.2[193]
Matrimid 5218, 7-day cross-linking103085.10.2124.6[193]
Matrimid 5218, 14-day cross-linking103084.70.1924.1[193]
Matrimid 5218, 21-day cross-linking103083.40.1522.2[193]
Matrimid 5218, 32-day cross-linking 103081.90.1315.0[193]
6FDA-durene, 5 min cross-linked 1030813611.112.3[193]
6FDA-durene, 10 min cross-linked 1030891.86.5314.1[193]
6FDA-durene, 15 min cross-linked 1030870.06.0511.6[193]
6FDA-durene, 30 min cross-linked 1030830.32.8710.6[193]
6FDA-durene, 60 min cross-linked 103082.140.405.35[193]

 *Permeability.

Various groups of materials have been already proposed and experimentally investigated for post-combustion CO2 capture with membrane process. By modifying membrane their properties can be improved. For example, when amine functional groups are randomly dispersed in the silica matrix, this membrane can separate CO2 with high selectivity. On the other hand, membrane structure can be modified by adding arginine salts [194196].

2.4.1. Inorganic Membranes

Based on structure, inorganic membranes can be classified into two categories: porous and dense. In porous inorganic membranes, a porous thin top layer is supported on a porous metal or ceramic support. Zeolite, silicon carbide, carbon, glass, zirconia, titania, and alumina membranes are mainly used as porous inorganic membranes supported on different substrates, such as -alumina, -alumina, zirconia, zeolite, or porous stainless steel [17, 199, 209, 210].

Zeolite membrane is the most important group of inorganic membranes. Zeolite membranes are considered more expensive than polymeric membranes, and therefore their unique properties of size selectivity and thermal and chemical stability should be exploited for successful application [211213].

The dense inorganic membranes (nonporous material) consist of a thin layer of metal, such as palladium and its alloys (metallic membrane), or solid electrolytes, such as zirconia. Another form of inorganic membrane is the liquid-immobilized membrane, where the pores of a membrane are completely filled with a liquid, which is permselective for certain compounds. Recently, attempts have been made to develop dense molten carbonate selective membranes for CO2 separation at high temperatures (>723 K). The inorganic membranes have high thermal stability for CO2 separation, but their selectivity and permeability are very low [200, 214, 215].

2.4.2. Polymeric Membranes

In polymeric membranes, the selective layer is generally a nonporous film that transports gases across by the solution-diffusion mechanism. Polyacetylenes, polyaniline, polyarylene ethers, polyarylates, polycarbonates, polyetherimides, polyethylene oxide, polyimides, polyphenylene oxides, polypyrroles, polysulfones, and amino groups such as polyethyleneimine blends, polymethacrylates are examples of polymeric membranes used for CO2 separation [17, 216218].

Selective polymeric membranes can be divided into two basic categories: glassy and rubbery. Almost glassy polymeric membranes are more suitable than rubbery polymeric membranes for CO2 separation because of their high gas selectivity and good mechanical properties. On the other hand, rubbery membranes are flexible and soft and they have a high permeability but a low selectivity, whereas glassy polymers exhibit a low permeability but a high selectivity [206, 219221].

Several advantages of polymeric membranes are (i) low cost of production; (ii) high performance separation; (iii) ease of synthesis; and (iv) mechanical stability. Although the polymeric membranes have high selectivity and permeability for CO2 separation, but their thermal stability is very low, and these membrane may be plasticized with influence of CO2 in membrane. Therefore, application of these membranes for post-combustion capture is limited, and flue gas must first be cooled down to 313–333 K for membrane process [184, 222, 223].

Ren et al. [205] prepared polymeric membranes with block copolymers; the balance of the hard and soft blocks can provide a good CO2 separation performance without loss of its permeability.

Improved polymeric membrane materials with superior separation performance can be obtained by synthesizing new polymers or modification or blending existing commercial polymers with organic or inorganic compounds [208, 224].

Due to high operating cost of membrane processes, it is necessary to perform more researches and studies about preparation of suitable membranes.

2.4.3. Mixed Matrix Membranes

Zeolites, carbon molecular sieves (CMS), and many polymeric materials offer attractive transport properties for CO2 separation. By mixing membrane material, excellent membrane with high performance for CO2 separation (selectivities of CO2/) can be prepared [200]. A group of scientists proposed the use of membrane based on polymer/immobilized liquid system especially polymerized ionic liquid membrane (PILM) or gelled ionic liquid membrane. ILMs consisting of aqueous solutions of 20% DEA immobilized in 25.4 μm microporous polypropylene supports have low permeability and suitable selectivity (974 barrer, 276, resp.) in 2 atm at 298 K [225228].

2.4.4. Hollow Fiber Membrane

Most industrially important membranes for gas separations are hollow fiber ones. Asymmetric hollow fiber membranes (such as polyvinylidene difluoride (PVDF)) with inner skinless structures are favourable for CO2 separation and absorption in gas-liquid membrane by low mass-transfer resistance and high permeability. In addition, this process can achieve significantly high adsorption efficiencies due to the much larger surface area for gas-liquid interface than conventional gas absorption processes [206, 229232].

According to data in Table 6, inorganic membranes have high permeability (about 150000 barrer) and low selectivity (about 15). Of course, some of inorganic membranes such as Y (FAU) with -A12O3 support and chitosan group are highly selective for CO2/N2 separation (selectivity () 100–800). Among polymeric membranes, polyamines have high permeability and selectivity (106 (barrer) and 980, resp.), and the second FSCM membranes have high permeability and fine selectivity (105 (barrer), 230, resp.). Other polymeric membrane groups are not selective for CO2/N2 separation, and maximum selectivity of these membranes is about 30.

2.5. Novel CO2 Capture Technologies

These methods include electrochemical pumps and chemical looping approaches to CO2 separation. The molten carbonate and aqueous alkaline fuel cells have been studied for use in separating CO2 from both air and flue gases. Electrochemical pumps discussed include carbonate and proton conductors. Molten carbonate is nearly 100% selective for CO2 separation, but major disadvantage in the application of molten carbonate electrochemical cells for CO2 separation is that this process is not repeatedly. Other disadvantages of these technologies are: corrosion, difficult operating condition ( K), and sensitivity to the presence of   [45, 233].

In chemical looping combustion, the oxygen for combustion of the fuel is provided by a regenerable metal oxide catalyst. The chemical looping scheme can be presented in the general form [45]:

Nickel oxide is one main candidate for the chemical looping combustion of methane, as low as 673 K, because it is extensive and effective for the chemical looping combustion [45].

2.6. Discussion

Various technologies such as absorption, adsorption, cryogenic distillation, and membrane have been suggested for CO2 separation from flue gases (Table 7). In this paper, various technologies for different feed conditions were investigated. Absorption is an important technology for CO2 separation. Although physical solvents required low energy for regeneration, they have low absorption capacity and selectivity for CO2 separation. Selexol is the best physical solvent and suitable for sweetening natural gas. However, physical absorption is not economical for flue gas streams with CO2 concentration lower than 15 vol% (95 US$/ton CO2 [234]).


Technology Advantages Disadvantages Scale

Absorption(i) React rapidly
(ii) High absorption capacities
(iii) Very flexible
(i) Equipment corrosion
(ii) High energy required for regenerating solvent
Industrial

Adsorption(i) Low energy consumption and cost of CO2 capture
(ii) Suitable for separating CO2 from dilute stream
Low adsorption capacities (in flue gases conditions)Pilot

Cryogenic distillation(i) Liquid CO2 production
(ii) Not requiring solvents or other components
(iii) Easy scaled-up to industrial-scale application
Require large amount of energyPilot

Membrane separation(i) Clean and simple process
(ii) Continuous, steady-state technology
Require high energy for post-combustion CO2 captureExperimental

Chemical solvents are classified in main groups such as alkanolamines, ammonia, aqueous piperazine (PZ), and amino acids. Chemical absorbents such as monoethanolamine (MEA) have high absorption capacities and are very flexible for CO2 separation; therefore, these solvents are usually preferred to physical solvents. Chemical absorption with alkanolamines is the only technology that is used in an industrial scale for post-combustion capture. Amines react rapidly, selectively, and reversibly with CO2 and are relatively nonvolatile and inexpensive solvents. In this process, the corrosion is the main problem; therefore, in recent studies, new amines and various mixtures of them were proposed and compared with previous ones to find suitable solvents. Suitable solvents for CO2 separation must have high CO2 absorption capacity, less corrosion, less viscosity and less regeneration energy. These studies showed that CASTOR 1 and 2, which are blended amine solvents (MEA/MDEA), are the best chemical adsorbents so far proposed for post-combustion CO2 capture. Experimental results indicated that amine amino acid salts (AAAS) have better performance than MEA of the same concentration for CO2 absorption, but do not deteriorate in the presence of oxygen. However, absorption has several disadvantages such as it requires high energy to regenerate solvents (3.0 GJ/ton CO2 for absorption with 40%wt MEA in 210 kPa [235]), therefore need more efforts in the future to reduce energy consumption in post-combustion CO2 capture with chemical absorption.

Adsorption is the one effective technology that can reduce energy and cost of the capture or separation of CO2 in post-combustion capture. Adsorption is suitable for separating CO2 from dilute and low flow rate stream, but flue gases conditions are the main problem against industrialization adsorption process. The CaO-MgAl2O4 and nano CaO/Al2O3 are the best chemical adsorbents. Although, the chemical adsorbents have high capacity and selectivity, but their regeneration is difficult. Physical adsorption is the most suitable for CO2 capture at high pressures and low temperatures. At higher pressure (above 4 bar) activated carbons are more efficient than zeolites. The energy and cost of adsorption for activated carbons are nearly half of that of zeolites. On the other hand, zeolites (particularly 13X and 5A) have high selectivity for CO2 separation. Generally, zeolite 5A may have better adsorption efficiency at co-adsorption of SO2, NO and CO2 than zeolite 13X.

In order to achieve more selective CO2 separation from flue gases, the modified adsorbent surface was considered. New adsorbents such as honeyncomb monolith, MOFs, CHAs (NaCHA and CaCHA), PMO (MCM and SBA) and MSPs (Na2SiO4) are suitable adsorbents for selective CO2 separation but they require more researches and studies. However, the development of suitable adsorbents with high CO2 adsorption capacity, which can be replaced absorption with chemical adsorbent, is still demanded.

Cryogenic distillation separation can be used for CO2 separation but its major disadvantage is the large amount of energy required to provide the refrigeration. Many new processes have been proposed for using cryogenic, but generally this technology is not suitable for post-combustion capture and is appropriate for oxy-fuel combustion method and CO2 separation from exhaust of cement industry (stream with high CO2 concentration).

The membrane separation method is a continuous, steady-state, clean and simple process for CO2 recovery. Since the pressure drop is driving force for membrane process, the flue gas stream must compress. Since compressing flue gas is very difficult and expensive, membrane separation is suitable for high pressure stream with high concentration (>10 vol%). Inorganic membrane have high thermal and chemical stability but their selectivity is lower than polymeric membranes. Although Y (FAU) with -Al2O3 support and arginine salt chitosan are the best inorganic membrane, zeolite mambranes are suitable ones for CO2 separation. Polymeric membranes are very selective for CO2 separation but they have low thermal stability. Therefore, polymeric membranes are suitable for application in pre-combustion processes. Glassy polymeric membranes have higher selectivity, while the rubbery polymeric membranes have higher thermal stability. Perfect membrane with high performance for CO2 separation (selectivities of CO2/) can be prepared by mixing various membranes.

Because of operating problems and high cost of compressing, membrane separation is not suitable for post-combustion capture, but membrane technology is suitable for producing oxygen-enriched streams from air, in oxy-fuel combustion systems.

Electrochemical pumps and chemical looping are two new technologies suggested for CO2 capture. Now these technologies are not effective in comparison with other technologies. Therefore, application of electrochemical pumps and chemical looping in CCS needs more research.

3. Conclusion

Because of economical and environmental incentives, researchers have mainly focused on CO2 separation from different process streams, especially from the flue gases. In recent years, post-combustion capture has been the topic of many researches, because it is more flexible and can be easily added to the fossil fuel power plants.

Based on above findings, it can be concluded that flue gases properties (mainly concentration of CO2, temperature and pressure) are the most effective factors for selection of suitable process for CO2 separation.

Since flue gases have high temperature (about 373 K), low pressure, and low CO2 concentration (1 atm and 10–15% moL), bulk absorption and adsorption processes may be the best suitable process for CO2 separation from these streams. Due to simplicity of absorption process, this process has been applied in industrial plants, although many researches have been focused on preparation of adsorbents with high selectivity and capacity, in recent years. For industrial application, more studies about adsorbents are necessary. Cryogenic distillation and membrane processes are efficient for gas streams with high CO2 concentration. Therefore, these process are economically efficient for pre-combustion capture. In recent years, different studies have been performed to optimize cryogenic cycles and preparation of suitable membrane for CO2 separation from post-combustion flue gases.

By the result of this study, future research direction on the scale-up and industrialization of adsorption (with modified adsorbent), and membrane process for CO2 separation is suggested. Therefore more studies must be focused on modeling and simulation of these processes (membrane and adsorption), although research for finding new adsorbent, suitable mambrane (with mixed or modified present membrane) and blending amine solvents can reduce CCS cost.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. S. Q. Solomon, S. Q. D, M. Manning et al., “Book reviews,” South African Geographical Journal, vol. 91, pp. 103–104, 2009. View at: Google Scholar
  2. C. A. McMillan, G. A. Keoleian, and D. V. Spitzley, Greenhouse Gases, University of Michigan, Ann Arbor, Mich, USA, 2005.
  3. T. J. Blasing, Recent Greenhouse Gas Concentrations, US Department of Energy, 32 edition, 2012. View at: Publisher Site
  4. C. H. Chiao, J. L. Chen, C. R. Lan, S. Chen, and H. W. Hsu, “Development of carbon dioxide capture and storage technology taiwan power company perspective,” Sustainable Environment Research, vol. 21, pp. 1–8, 2011. View at: Google Scholar
  5. T. L. P. Dantas, F. M. T. Luna, I. J. Silva et al., “Carbon dioxide-nitrogen separation through pressure swing adsorption,” Chemical Engineering Journal, vol. 172, no. 2-3, pp. 698–704, 2011. View at: Publisher Site | Google Scholar
  6. K. E. Zanganeh, A. Shafeen, and C. Salvador, “CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit,” Energy Procedia, vol. 1, pp. 247–252, 2009. View at: Google Scholar
  7. A. T. A. o.C.a.N.A.C.o, “Canadian aviation industry report on greenhouse gas emissions reductions,” Tech. Rep., Ottawa, Canda, 2012. View at: Google Scholar
  8. D. Berstad, R. Anantharaman, and P. Nekså, “Low-temperature CO2capture technologies-applications and potential,” International Journal of Refrigeration, vol. 36, pp. 1403–1416, 2013. View at: Google Scholar
  9. I.E.A.I.G.G.R.D. Programme, “CO2 abatement in oil refineries: fired heaters,” I. E. A. I.G.G.R.D, PH3/31 edition, 2000. View at: Google Scholar
  10. L. Zhao, E. Riensche, R. Menzer, L. Blum, and D. Stolten, “A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture,” Journal of Membrane Science, vol. 325, no. 1, pp. 284–294, 2008. View at: Publisher Site | Google Scholar
  11. A. Hussain and M.-B. Hägg, “A feasibility study of CO2 capture from flue gas by a facilitated transport membrane,” Journal of Membrane Science, vol. 359, no. 1-2, pp. 140–148, 2010. View at: Publisher Site | Google Scholar
  12. I. T. Forum, “Reducing transport greenhouse gas emissions: trends & data,” 2010. View at: Google Scholar
  13. N. Mahasenan, S. Smith, K. Humphreys, and Y. Kaya, “The cement industry and global climate change: current and potential future cement industry CO2 emissions,” in Proceedings of the Greenhouse Gas Control Technologies-6th International Conference, p. 995, Pergamon, Turkey, 2003. View at: Google Scholar
  14. K. S. Lackner, A. H. A. Park, and B. G. Miller, “Eliminating CO2 emissions from coal-fired power plants,” in Generating Electricity in a Carbon-Constrained World, pp. 127–173, Academic Press, Boston, 2010. View at: Google Scholar
  15. A. Mohammadi, M. Soltanieh, M. Abbaspour, and F. Atabi, “What is energy efficiency and emission reduction potential in the Iranian petrochemical industry?” International Journal of Greenhouse Gas Control, vol. 12, pp. 460–471, 2013. View at: Google Scholar
  16. E. Worrell, L. Price, N. Martin, C. Hendriks, and L. O. Meida, “Carbon dioxide emissions from the global cement industry,” Annual Review of Energy and the Environment, vol. 26, pp. 303–329, 2001. View at: Publisher Site | Google Scholar
  17. H. Yang, Z. Xu, M. Fan et al., “Progress in carbon dioxide separation and capture: a review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008. View at: Publisher Site | Google Scholar
  18. J. Barnett, S. Dessai, and M. Webber, “Will OPEC lose from the Kyoto Protocol?” Energy Policy, vol. 32, no. 18, pp. 2077–2088, 2004. View at: Publisher Site | Google Scholar
  19. H. Li, R. P. Berrens, A. K. Bohara, H. C. Jenkins-Smith, C. L. Silva, and D. L. Weimer, “Would developing country commitments affect US households' support for a modified Kyoto Protocol?” Ecological Economics, vol. 48, no. 3, pp. 329–343, 2004. View at: Publisher Site | Google Scholar
  20. M. Crombie, S. Imbus, and I. Miracca, “CO2 capture project phase 3-demonstration phase,” Energy Procedia, vol. 4, pp. 6104–6108, 2011. View at: Google Scholar
  21. U. Springer, “The market for tradable GHG permits under the Kyoto Protocol: a survey of model studies,” Energy Economics, vol. 25, no. 5, pp. 527–551, 2003. View at: Publisher Site | Google Scholar
  22. A. Pridmore, A. Bristow, T. May, and M. Tight, “Climate change, impacts, future scenarios and the role of transport,” Report of University of Leeds, Institute for Transport Studies, 2003. View at: Google Scholar
  23. J. G. J. Olivier, G. Janssens-Maenhout, and J. A. H. W. Peters, “Trends in global CO2 emissions,” Tech. Rep., PBL Netherlands Environmental Assessment Agency, Ispra, Italy, 2012. View at: Google Scholar
  24. H. Herzog, J. Meldon, and A. Hatton, “Advanced post-combustion CO2 capture,” Tech. Rep., Clean Air Task Force, Doris Duke Foundation, 2009. View at: Google Scholar
  25. J. C. M. Pires, F. G. Martins, M. C. M. Alvim-Ferraz, and M. Simões, “Recent developments on carbon capture and storage: an overview,” Chemical Engineering Research and Design, vol. 89, no. 9, pp. 1446–1460, 2011. View at: Publisher Site | Google Scholar
  26. D. G. Chapel, C. L. Mariz, and J. Ernest, “Recovery of CO2 from flue gases: commercial trends,” in Proceedings of the Canadian Society of Chemical Engineers Annual Meeting, pp. 1–16, 1999. View at: Google Scholar
  27. F. T. Zangeneh, S. Sahebdelfar, and M. T. Ravanchi, “Conversion of carbon dioxide to valuable petrochemicals: an approach to clean development mechanism,” Journal of Natural Gas Chemistry, vol. 20, no. 3, pp. 219–231, 2011. View at: Publisher Site | Google Scholar
  28. N. Dave, T. Do, G. Puxty, R. Rowland, P. H. M. Feron, and M. I. Attalla, “CO2 capture by aqueous amines and aqueous ammonia-A Comparison,” Energy Procedia, vol. 1, pp. 949–954, 2009. View at: Google Scholar
  29. R. Thiruvenkatachari, S. Su, H. An, and X. X. Yu, “Post combustion CO2 capture by carbon fibre monolithic adsorbents,” Progress in Energy and Combustion Science, vol. 35, no. 5, pp. 438–455, 2009. View at: Publisher Site | Google Scholar
  30. J. Gibbins and H. Chalmers, “Carbon capture and storage,” Energy Policy, vol. 36, no. 12, pp. 4317–4322, 2008. View at: Publisher Site | Google Scholar
  31. B. Metz, “Carbon Dioxide Capture and Storage:,” Special Report of the Intergovernmental Panel on Climate Change, 2005. View at: Google Scholar
  32. T. F. Wall, “Combustion processes for carbon capture,” Proceedings of the Combustion Institute, vol. 31, pp. 31–47, 2007. View at: Google Scholar
  33. E. Rubin and H. de Coninck, “IPCC special report on carbon dioxide capture and storage,” Tech. Rep., Cambridge University Press, UK, 2005, TNO, Cost Curves for CO2 Storage, part 2, 2004. View at: Google Scholar
  34. V. R. Choudhary, S. Mayadevi, and A. P. Singh, “Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites,” Journal of the Chemical Society, Faraday Transactions, vol. 91, no. 17, pp. 2935–2944, 1995. View at: Publisher Site | Google Scholar
  35. P. Dechamps, “European CO2 capture and storage projects,” Tech. Rep., European Commission, Brussels, Belgium, 2007. View at: Google Scholar
  36. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall, “Oxy-fuel combustion technology for coal-fired power generation,” Progress in Energy and Combustion Science, vol. 31, no. 4, pp. 283–307, 2005. View at: Publisher Site | Google Scholar
  37. M. Glazer, C. Bertrand, L. Fryda, and W. de Jong, “EOSLT consortium biomass co-firing, WP 4—biomass co-firing in oxy-fuel combustion Part II: ash deposition modelling of coal and biomass blends under air and oxygen combustion conditions,” Tech. Rep., Energy research Center of the Neterland, 2010. View at: Google Scholar
  38. SAGE Publications, I. Green Issues and Debates: an A-to-Z Guide. Green Issues and Debates: an A-to-Z Guide, SAGE Publications, Oaks, Calif, USA.
  39. A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications—a review,” Energy, vol. 35, no. 6, pp. 2610–2628, 2010. View at: Publisher Site | Google Scholar
  40. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, “Post-combustion CO2 capture using solid sorbents: a review,” Industrial and Engineering Chemistry Research, vol. 51, no. 4, pp. 1438–1463, 2012. View at: Publisher Site | Google Scholar
  41. J. S. Rhodes and D. W. Keith, “Engineering economic analysis of biomass IGCC with carbon capture and storage,” Biomass and Bioenergy, vol. 29, no. 6, pp. 440–450, 2005. View at: Publisher Site | Google Scholar
  42. T. L. Dantas, A. E. Rodrigues, and R. F. Moreira, “Separation of carbon dioxide from flue gas using adsorption on porous solids,” Tech: Greenhouse Gases—Capturing, Utilization and Reduction, 2012. View at: Google Scholar
  43. G. S. Esber III, “Carbon dioxide capture technology for the coal-powered electricity industry: a systematic prioritization of research needs,” Tech. Rep., Massachusetts Institute of Technology, 2006. View at: Google Scholar
  44. Y. Lv, X. Yu, J. Jia, S.-T. Tu, J. Yan, and E. Dahlquist, “Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption,” Applied Energy, vol. 90, no. 1, pp. 167–174, 2012. View at: Publisher Site | Google Scholar
  45. E. J. Granite and T. O'Brien, “Review of novel methods for carbon dioxide separation from flue and fuel gases,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1423–1434, 2005. View at: Publisher Site | Google Scholar
  46. T. Nguyen, M. Hilliard, and G. T. Rochelle, “Amine volatility in CO2 capture,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 707–715, 2010. View at: Publisher Site | Google Scholar
  47. M. Gupta, I. Coyle, and K. Thambimuthu, “CO2capture technologies and opportunities in Canada,” in Proceedings of the 1st Canadian CC&S Technology Roadmap Workshop CO2 capture technologies and opportunities in Canada, CANMET Energy Technology Centre Natural Resources Canada, 2003. View at: Google Scholar
  48. H. J. Herzog, “The economics of CO2 separation and capture,” Journal of the Franklin Institute, vol. 7, pp. 13–24, 2000. View at: Google Scholar
  49. G. Pellegrini, R. Strube, and G. Manfrida, “Comparative study of chemical absorbents in postcombustion CO2 capture,” Energy, vol. 35, no. 2, pp. 851–857, 2010. View at: Publisher Site | Google Scholar
  50. N. MacDowell, N. Florin, A. Buchard et al., “An overview of CO2 capture technologies,” Energy and Environmental Science, vol. 3, no. 11, pp. 1645–1669, 2010. View at: Publisher Site | Google Scholar
  51. X. P. Li Gang, A. Webley Paul, Zhang Jun, and R. Singh, “Competition of CO2/H2O in adsorption based CO2 capture,” Energy Procedia, vol. 1, pp. 1123–1130. View at: Google Scholar
  52. P. Singh, J. P. M. Niederer, and G. F. Versteeg, “Structure and activity relationships for amine based CO2 absorbents-I,” International Journal of Greenhouse Gas Control, vol. 1, no. 1, pp. 5–10, 2007. View at: Publisher Site | Google Scholar
  53. S. Ma'mun, “Selection and characterization of new absorbents for carbon dioxide capture,” in Chemical Engineering, Faculty of Natural Science and Technology, 2005. View at: Google Scholar
  54. S. Cavenati, C. A. Grande, and A. E. Rodrigues, “Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption,” Energy and Fuels, vol. 20, no. 6, pp. 2648–2659, 2006. View at: Publisher Site | Google Scholar
  55. J. David, Economic evaluation of leading technology options 23 for sequestration of carbon dioxide [M.S. thesis], Chemical Engineering Practice Massachusetts Institute of Technology, 2000.
  56. D. L. Albritton, T. Barker, I. A. Bashmakov et al., Climate Change 2001: Synthesis Report, edited by D. J. Dokken, M. Noguer, ,P. V. d Linden,C. Johnson, J. Pan, Cambridge University Press, 2001.
  57. M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, “Post-combustion CO2 capture with chemical absorption: a state-of-the-art review,” Chemical Engineering Research and Design, vol. 89, no. 9, pp. 1609–1624, 2011. View at: Publisher Site | Google Scholar
  58. J. Gabrielsen, H. F. Svendsen, M. L. Michelsen, E. H. Stenby, and G. M. Kontogeorgis, “Experimental validation of a rate-based model for CO2 capture using an AMP solution,” Chemical Engineering Science, vol. 62, no. 9, pp. 2397–2413, 2007. View at: Publisher Site | Google Scholar
  59. R. Idem, M. Wilson, P. Tontiwachwuthikul et al., “Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant,” Industrial and Engineering Chemistry Research, vol. 45, no. 8, pp. 2414–2420, 2006. View at: Publisher Site | Google Scholar
  60. M. Lucquiaud and J. Gibbins, “On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems,” Chemical Engineering Research and Design, vol. 89, no. 9, pp. 1553–1571, 2011. View at: Publisher Site | Google Scholar
  61. J. N. Knudsen, J. N. Jensen, P. J. Vilhelmsen, and O. Biede, “Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents,” Energy Procedia, vol. 1, no. 1, pp. 783–790, 2009. View at: Google Scholar
  62. P. H. M. Feron, “Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide,” International Journal of Greenhouse Gas Control, vol. 4, no. 2, pp. 152–160, 2010. View at: Publisher Site | Google Scholar
  63. F. Qin, S. Wang, A. Hartono, H. F. Svendsen, and C. Chen, “Kinetics of CO2 absorption in aqueous ammonia solution,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 729–738, 2010. View at: Publisher Site | Google Scholar
  64. H. P. Mangalapally, R. Notz, S. Hoch et al., “Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents,” Energy Procedia, vol. 1, pp. 963–970, 2009. View at: Google Scholar
  65. P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron, “Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine,” AIChE Journal, vol. 49, no. 1, pp. 203–213, 2003. View at: Publisher Site | Google Scholar
  66. S. A. Freeman, R. Dugas, D. van Wagener, T. Nguyen, and G. T. Rochelle, “Carbon dioxide capture with concentrated, aqueous piperazine,” Energy Procedia, vol. 1, pp. 1489–1496, 2009. View at: Google Scholar
  67. J. V. Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn, “Kinetic study of CO2 with various amino acid salts in aqueous solution,” Chemical Engineering Science, vol. 64, no. 1, pp. 59–68, 2009. View at: Publisher Site | Google Scholar
  68. E. S. Hamborg, J. P. M. Niederer, and G. F. Versteeg, “Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K,” Journal of Chemical and Engineering Data, vol. 52, no. 6, pp. 2491–2502, 2007. View at: Publisher Site | Google Scholar
  69. U. E. Aronu, H. F. Svendsen, and K. A. Hoff, “Investigation of amine amino acid salts for carbon dioxide absorption,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 771–775, 2010. View at: Publisher Site | Google Scholar
  70. J. T. Yeh, K. P. Resnik, K. Rygle, and H. W. Pennline, “Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1533–1546, 2005. View at: Publisher Site | Google Scholar
  71. C. H. Yu, C. H. Huang, and C. S. Tan, “A Review of CO2 Capture by Absorption and Adsorption,” Aerosol and Air Quality Research, vol. 12, pp. 745–769, 2012. View at: Google Scholar
  72. B. E. Gurkan, C. Juan, E. M. Mindrup et al., “Chemically complexing ionic liquids for post-combustion CO2 capture,” in Clearwater Clean Coal Conference, pp. 6–10, Clearwater, Fla, USA, 2010. View at: Google Scholar
  73. E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis Jr., “CO2 capture by a task-specific ionic liquid,” Journal of the American Chemical Society, vol. 124, no. 6, pp. 926–927, 2002. View at: Publisher Site | Google Scholar
  74. S. Baj, A. Siewniak, A. Chrobok, T. Krawczyk, and A. Sobolewski, “Monoethanolamine and ionic liquid aqueous solutions as effective systems for CO2capture,” Journal of Chemical Technology and Biotechnology, vol. 88, pp. 1220–1227, 2012. View at: Google Scholar
  75. J. P. Ciferno, D. Lang, and G. T. Rochelle, Carbon Dioxide Capture by Absorption with Potassium Carbonate, University of Texas, 2010.
  76. J. T. Cullinane and G. T. Rochelle, “Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide,” Fluid Phase Equilibria, vol. 227, no. 2, pp. 197–213, 2005. View at: Publisher Site | Google Scholar
  77. H. P. Mangalapally and H. Hasse, “Pilot plant experiments with mea and new solvents for post combustion CO2 capture by reactive absorption,” Energy Procedia, vol. 4, pp. 1–8, 2011. View at: Google Scholar
  78. J. Brouwer, P. Feron, and N. Ten Asbroek, “Amino-acid salts for CO2 capture from flue gases,” in Proceedings of the 4th Annual Conference on Carbon Capture & Sequestration, 2009. View at: Google Scholar
  79. D. Kang, S. Park, H. Jo, J. Min, and J. Park, “Solubility of CO2in amino-acid-based solutions of (potassium sarcosinate), (potassium alaninate + piperazine), and (potassium serinate + piperazine),” Journal of Chemical & Engineering Data, vol. 58, pp. 1787–1791, 2013. View at: Google Scholar
  80. B. Farid and E. Fadwa, “Front matter,” in Proceedings of the 2nd Annual Gas Processing Symposium, p. 488, Elsevier, Doha, Qatar, 2010. View at: Google Scholar
  81. R. M. Davidson, Post-Combustion Carbon Capture from Coal Fired Plants: Solvent Scrubbing, IEA Clean Coal Centre, 2007.
  82. V. Darde, K. Thomsen, W. J. van Well, and E. H. Stenby, “Chilled ammonia process for CO2 capture,” Energy Procedia, vol. 1, pp. 1035–1042, 2009. View at: Google Scholar
  83. S. Bishnoi and G. T. Rochelle, “Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide,” Industrial and Engineering Chemistry Research, vol. 41, no. 3, pp. 604–612, 2002. View at: Google Scholar
  84. A. Bajpai and M. K. Mondal, “Equilibrium solubility of CO2in aqueous mixtures of DEA and AEEA,” Journal of Chemical & Engineering Data, vol. 58, pp. 1490–1495, 2013. View at: Google Scholar
  85. A. L. Chaffee, G. P. Knowles, Z. Liang, J. Zhang, P. Xiao, and P. A. Webley, “CO2 capture by adsorption: materials and process development,” International Journal of Greenhouse Gas Control, vol. 1, no. 1, pp. 11–18, 2007. View at: Publisher Site | Google Scholar
  86. J.-R. Li, Y. Ma, M. C. McCarthy et al., “Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks,” Coordination Chemistry Reviews, vol. 255, no. 15-16, pp. 1791–1823, 2011. View at: Publisher Site | Google Scholar
  87. L.-Y. Meng and S.-J. Park, “Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon,” Journal of Colloid and Interface Science, vol. 366, no. 1, pp. 135–140, 2012. View at: Publisher Site | Google Scholar
  88. M. Sevilla and A. B. Fuertes, “CO2 adsorption by activated templated carbons,” Journal of Colloid and Interface Science, vol. 366, no. 1, pp. 147–154, 2012. View at: Publisher Site | Google Scholar
  89. M. Martunus, Z. Helwani, A. D. Wiheeb, J. Kim, and M. R. Othman, “Improved carbon dioxide capture using metal reinforced hydrotalcite under wet conditions,” International Journal of Greenhouse Gas Control, vol. 7, pp. 127–136, 2012. View at: Publisher Site | Google Scholar
  90. B. Dou, Y. Song, Y. Liu, and C. Feng, “High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor,” Journal of Hazardous Materials, vol. 183, no. 1–3, pp. 759–765, 2010. View at: Publisher Site | Google Scholar
  91. M. Kotyczka-moranska, G. Tomaszewicz, and G. Labojko, “Comparison of different methods for enhancing CO2capture by CaO-based sorbents. Review,” Physicochemical Problems of Mineral Processing, vol. 48, pp. 77–90, 2012. View at: Google Scholar
  92. G. Valenti, D. Bonalumi, and E. Macchi, “A parametric investigation of the chilled ammonia process from energy and economic perspectives,” Fuel, vol. 101, pp. 74–83, 2011. View at: Publisher Site | Google Scholar
  93. Z. H. Lee, K. T. Lee, S. Bhatia, and A. R. Mohamed, “Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2599–2609, 2012. View at: Publisher Site | Google Scholar
  94. Z. Xiang, Z. Hu, D. Cao et al., “Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping,” Angewandte Chemie, vol. 50, no. 2, pp. 491–494, 2011. View at: Publisher Site | Google Scholar
  95. K. Essaki, M. Kato, and K. Nakagawa, “CO2 removal at high temperature using packed bed of lithium silicate pellets,” Journal of the Ceramic Society of Japan, vol. 114, no. 1333, pp. 739–742, 2006. View at: Publisher Site | Google Scholar
  96. C. S. Martavaltzi and A. A. Lemonidou, “Development of new CaO based sorbent materials for CO2 removal at high temperature,” Microporous and Mesoporous Materials, vol. 110, no. 1, pp. 119–127, 2008. View at: Publisher Site | Google Scholar
  97. R. Besson, M. Rocha Vargas, and L. Favergeon, “CO2 adsorption on calcium oxide: an atomic-scale simulation study,” Surface Science, vol. 606, no. 3-4, pp. 490–495, 2012. View at: Publisher Site | Google Scholar
  98. S. Miyata, “Anion-exchange properties of hydrotalcite-like compounds,” Clays & Clay Minerals, vol. 31, no. 4, pp. 305–311, 1983. View at: Google Scholar
  99. A. R. Mohamed, S. Bhatia, K. T. Lee, C. Y. H. Foo, Z. H. Lee, and N. A. Razali, “Nanomaterials as environmentally compatible next generation green carbon capture and utilization materials,” Transactions on GIGAKU, vol. 1, Article ID 01006, pp. 1–7, 2012. View at: Google Scholar
  100. M. Songolzadeh, M. Takht Ravanchi, and M. Soleimani, “Carbon dioxide capture and storage: a general review on adsorbents,” World Academy of Science, Engineering and Technology, vol. 70, pp. 225–232, 2012. View at: Google Scholar
  101. M. Anbia and V. Hoseini, “Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide,” Chemical Engineering Journal, vol. 191, pp. 326–330, 2012. View at: Publisher Site | Google Scholar
  102. L.-Y. Lin and H. Bai, “Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture,” Microporous and Mesoporous Materials, vol. 136, no. 1–3, pp. 25–32, 2010. View at: Publisher Site | Google Scholar
  103. D. M. D'Alessandro, B. Smit, and J. R. Long, “Carbon dioxide capture: prospects for new materials,” Angewandte Chemie, vol. 49, no. 35, pp. 6058–6082, 2010. View at: Publisher Site | Google Scholar
  104. D. I. Jang and S. J. Park, “Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons,” Fuel, vol. 102, pp. 439–444, 2012. View at: Google Scholar
  105. S. Choi, J. H. Drese, and C. W. Jones, “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources,” ChemSusChem, vol. 2, no. 9, pp. 796–854, 2009. View at: Publisher Site | Google Scholar
  106. J. A. Delgado, M. A. Uguina, J. L. Sotelo, and B. Ruíz, “Fixed-bed adsorption of carbon dioxide-helium, nitrogen-helium and carbon dioxide-nitrogen mixtures onto silicalite pellets,” Separation and Purification Technology, vol. 49, no. 1, pp. 91–100, 2006. View at: Publisher Site | Google Scholar
  107. H. R. Abid, G. H. Pham, H.-M. Ang, M. O. Tade, and S. Wang, “Adsorption of CH4 and CO2 on Zr-metal organic frameworks,” Journal of Colloid and Interface Science, vol. 366, no. 1, pp. 120–124, 2012. View at: Publisher Site | Google Scholar
  108. J. Wang, L. A. Stevens, T. C. Drage, and J. Wood, “Preparation and CO2 adsorption of amine modified Mg-Al LDH via exfoliation route,” Chemical Engineering Science, vol. 68, no. 1, pp. 424–431, 2012. View at: Publisher Site | Google Scholar
  109. A. K. Mishra and S. Ramaprabhu, “Palladium nanoparticles decorated graphite nanoplatelets for room temperature carbon dioxide adsorption,” Chemical Engineering Journal, vol. 187, pp. 10–15, 2012. View at: Publisher Site | Google Scholar
  110. G. Finos, S. Collins, G. Blanco et al., “Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium-gallium mixed oxides,” Catalysis Today, vol. 180, no. 1, pp. 9–18, 2012. View at: Publisher Site | Google Scholar
  111. R. P. Grimm, K. A. Eriksson, N. Ripepi, C. Eble, and S. F. Greb, “Seal evaluation and confinement screening criteria for beneficial carbon dioxide storage with enhanced coal bed methane recovery in the Pocahontas Basin, Virginia,” International Journal of Coal Geology, vol. 90-91, pp. 110–125, 2012. View at: Publisher Site | Google Scholar
  112. B. Guo, L. Chang, and K. Xie, “Adsorption of carbon dioxide on activated carbon,” Journal of Natural Gas Chemistry, vol. 15, no. 3, pp. 223–229, 2006. View at: Publisher Site | Google Scholar
  113. R. Sakurovs, S. Day, and S. Weir, “Relationships between the sorption behaviour of methane, carbon dioxide, nitrogen and ethane on coals,” Fuel, vol. 97, pp. 725–729, 2012. View at: Publisher Site | Google Scholar
  114. P. Weniger, J. Franců, P. Hemza, and B. M. Krooss, “Investigations on the methane and carbon dioxide sorption capacity of coals from the SW Upper Silesian Coal Basin, Czech Republic,” International Journal of Coal Geology, vol. 93, pp. 23–39, 2012. View at: Publisher Site | Google Scholar
  115. C. Garnier, G. Finqueneisel, T. Zimny et al., “Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms,” International Journal of Coal Geology, vol. 87, no. 2, pp. 80–86, 2011. View at: Publisher Site | Google Scholar
  116. J. C. Abanades, E. S. Rubin, and E. J. Anthony, “Sorbent cost and performance in CO2 capture systems,” Industrial and Engineering Chemistry Research, vol. 43, no. 13, pp. 3462–3466, 2004. View at: Google Scholar
  117. T. C. Drage, J. M. Blackman, C. Pevida, and C. E. Snape, “Evaluation of activated carbon adsorbents for CO2 capture in gasification,” Energy and Fuels, vol. 23, no. 5, pp. 2790–2796, 2009. View at: Publisher Site | Google Scholar
  118. W. Shen, S. Zhang, Y. He, J. Li, and W. Fan, “Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture,” Journal of Materials Chemistry, vol. 21, no. 36, pp. 14036–14040, 2011. View at: Publisher Site | Google Scholar
  119. M. Gray, Y. Soong, K. Champagne, R. Stevens Jr, P. Toochinda, and S. Chuang, “Solid amine CO2capture sorbents,” Fuel, vol. 80, pp. 867–871, 2001. View at: Google Scholar
  120. C. Pevida, M. G. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J. J. Pis, “Surface modification of activated carbons for CO2 capture,” Applied Surface Science, vol. 254, no. 22, pp. 7165–7172, 2008. View at: Publisher Site | Google Scholar
  121. M. G. Plaza, C. Pevida, B. Arias, J. Fermoso, F. Rubiera, and J. J. Pis, “A comparison of two methods for producing CO2 capture adsorbents,” Energy Procedia, vol. 1, pp. 1107–1113, 2009. View at: Google Scholar
  122. M. G. Plaza, S. García, F. Rubiera, J. J. Pis, and C. Pevida, “Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies,” Chemical Engineering Journal, vol. 163, no. 1-2, pp. 41–47, 2010. View at: Publisher Site | Google Scholar
  123. K. S. Nor Kamarudin and H. Mat, “Synthesis and modification of micro and mesoporous materials as CO2 adsorbent,” Tech. Rep., Faculty of Chemical and Natural Resources Engineering: University of Technology, Johor, Malaysia, 2009. View at: Google Scholar
  124. M. Radosz, X. Hu, K. Krutkramelis, and Y. Shen, “Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “green” energy producers,” Industrial and Engineering Chemistry Research, vol. 47, no. 10, pp. 3783–3794, 2008. View at: Publisher Site | Google Scholar
  125. J. M. Rosas, J. Bedia, J. Rodríguez-Mirasol, and T. Cordero, “Preparation of hemp-derived activated carbon monoliths. Adsorption of water vapor,” Industrial and Engineering Chemistry Research, vol. 47, no. 4, pp. 1288–1296, 2008. View at: Publisher Site | Google Scholar
  126. R. Yang, G. Liu, M. Li, J. Zhang, and X. Hao, “Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem,” Microporous and Mesoporous Materials, vol. 158, pp. 108–116, 2012. View at: Publisher Site | Google Scholar
  127. R. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, “Adsorption of CO2 on molecular sieves and activated carbon,” Energy and Fuels, vol. 15, no. 2, pp. 279–284, 2001. View at: Publisher Site | Google Scholar
  128. K. I. Vatalis, A. Laaksonen, G. Charalampides, and N. P. Benetis, “Intermediate technologies towards low-carbon economy. the Greek zeolite CCS outlook into the EU commitments,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 3391–3400, 2012. View at: Publisher Site | Google Scholar
  129. Z. Liu, C. A. Grande, P. Li, J. Yu, and A. E. Rodrigues, “Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas,” Separation and Purification Technology, vol. 81, pp. 307–317, 2011. View at: Publisher Site | Google Scholar
  130. J. Zhang, P. Xiao, G. Li, and P. A. Webley, “Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption,” Energy Procedia, vol. 1, pp. 1115–1122, 2009. View at: Google Scholar
  131. X. Cui, R. M. Bustin, and G. Dipple, “Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data,” Fuel, vol. 83, no. 3, pp. 293–303, 2004. View at: Publisher Site | Google Scholar
  132. C. J. Anderson, W. Tao, J. Jiang, S. I. Sandler, G. W. Stevens, and S. E. Kentish, “An experimental evaluation and molecular simulation of high temperature gas adsorption on nanoporous carbon,” Carbon, vol. 49, no. 1, pp. 117–125, 2011. View at: Publisher Site | Google Scholar
  133. M. Kumar and Y. Ando, “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 6, pp. 3739–3758, 2010. View at: Publisher Site | Google Scholar
  134. M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, and M. Meyyappan, “CO2 adsorption in single-walled carbon nanotubes,” Chemical Physics Letters, vol. 376, no. 5-6, pp. 761–766, 2003. View at: Publisher Site | Google Scholar
  135. A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F. D. Magalhães, and A. Mendes, “Characterization of potassium glycinate for carbon dioxide absorption purposes,” Chemical Engineering Science, vol. 62, no. 23, pp. 6534–6547, 2007. View at: Publisher Site | Google Scholar
  136. R. Banerjee, A. Phan, B. Wang et al., “High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture,” Science, vol. 319, no. 5865, pp. 939–943, 2008. View at: Publisher Site | Google Scholar
  137. K. S. Park, Z. Ni, A. P. Côté et al., “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10186–10191, 2006. View at: Publisher Site | Google Scholar
  138. T. D. Burchell and R. R. Judkins, “Passive CO2 removal using a carbon fiber composite molecular sieve,” Energy Conversion and Management, vol. 37, no. 6–8, pp. 947–954, 1996. View at: Google Scholar
  139. Z. Yong, V. Mata, and A. E. Rodrigues, “Adsorption of carbon dioxide at high temperature—a review,” Separation and Purification Technology, vol. 26, no. 2-3, pp. 195–205, 2002. View at: Publisher Site | Google Scholar
  140. G. M. Kimber, M. Jagtoyen, Y. Q. Fei, and F. J. Derbyshire, “Fabrication of carbon fibre composites for gas separation,” Gas Separation and Purification, vol. 10, no. 2, pp. 131–136, 1996. View at: Google Scholar
  141. L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, “Intercalation and exfoliation routes to graphite nanoplatelets,” Journal of Materials Chemistry, vol. 15, no. 9, pp. 974–978, 2005. View at: Publisher Site | Google Scholar
  142. A. K. Mishra and S. Ramaprabhu, “Study of CO2 adsorption in low cost graphite nanoplatelets,” International Journal of Chemical Engineering and Applications, vol. 1, pp. 266–269, 2010. View at: Google Scholar
  143. R. Du, X. Feng, and A. Chakma, “Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations,” Journal of Membrane Science, vol. 279, no. 1-2, pp. 76–85, 2006. View at: Publisher Site | Google Scholar
  144. K. Kumar, C. N. Dasgupta, B. Nayak, P. Lindblad, and D. Das, “Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria,” Bioresource Technology, vol. 102, no. 8, pp. 4945–4953, 2011. View at: Publisher Site | Google Scholar
  145. H. Deng, H. Yi, X. Tang, Q. Yu, P. Ning, and L. Yang, “Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites,” Chemical Engineering Journal, vol. 188, pp. 77–85, 2012. View at: Publisher Site | Google Scholar
  146. N. Gargiulo, F. Pepe, and D. Caputo, “Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica,” Journal of Colloid and Interface Science, vol. 367, no. 1, pp. 348–354, 2012. View at: Publisher Site | Google Scholar
  147. A. R. Millward and O. M. Yaghi, “Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,” Journal of the American Chemical Society, vol. 127, no. 51, pp. 17998–17999, 2005. View at: Publisher Site | Google Scholar
  148. C. Lu, H. Bai, F. Su, W. Chen, J. F. Hwang, and H.-H. Lee, “Adsorption of carbon dioxide from gas streams via mesoporous spherical-silica particles,” Journal of the Air and Waste Management Association, vol. 60, no. 4, pp. 489–496, 2010. View at: Publisher Site | Google Scholar
  149. A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon, and A. Chidthaisong, “synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity,” Journal of Sustainable Energy & Environmentn, vol. 2, pp. 77–81, 2011. View at: Google Scholar
  150. J. Wei, L. Liao, Y. Xiao, P. Zhang, and Y. Shi, “Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41,” Journal of Environmental Sciences, vol. 22, no. 10, pp. 1558–1563, 2010. View at: Publisher Site | Google Scholar
  151. Q. Wang, H. H. Tay, Z. Zhong, J. Luo, and A. Borgna, “Synthesis of high-temperature CO2adsorbents from organo-layered double hydroxides with markedly improved CO2capture capacity,” Energy & Environmental Science, vol. 5, pp. 7526–7530, 2012. View at: Google Scholar
  152. H. Lin and B. D. Freeman, “Gas solubility, diffusivity and permeability in poly(ethylene oxide),” Journal of Membrane Science, vol. 239, no. 1, pp. 105–117, 2004. View at: Publisher Site | Google Scholar
  153. P. Chowdhury, C. Bikkina, and S. Gumma, “Gas adsorption properties of the chromium-based metal organic framework MIL-101,” The Journal of Physical Chemistry C, vol. 113, no. 16, pp. 6616–6621, 2009. View at: Publisher Site | Google Scholar
  154. P. Li, B. Ge, S. Zhang, S. Chen, Q. Zhang, and Y. Zhao, “CO2 capture by polyethylenimine-modified fibrous adsorbent,” Langmuir, vol. 24, no. 13, pp. 6567–6574, 2008. View at: Publisher Site | Google Scholar
  155. B. Aziz, N. Hedin, and Z. Bacsik, “Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: effect of amine density,” Microporous and Mesoporous Materials, vol. 159, pp. 42–49, 2012. View at: Google Scholar
  156. M. M. Maroto-Valer, Z. Tang, and Y. Zhang, “CO2 capture by activated and impregnated anthracites,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1487–1502, 2005. View at: Publisher Site | Google Scholar
  157. X. Xu, C. Song, B. G. Miller, and A. W. Scaroni, “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1457–1472, 2005. View at: Publisher Site | Google Scholar
  158. X. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, “Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture,” Energy and Fuels, vol. 16, no. 6, pp. 1463–1469, 2002. View at: Publisher Site | Google Scholar
  159. J. Zhang, R. Singh, and P. A. Webley, “Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture,” Microporous and Mesoporous Materials, vol. 111, no. 1–3, pp. 478–487, 2008. View at: Publisher Site | Google Scholar
  160. H. R. Abid, H. Tian, H.-M. Ang, M. O. Tade, C. E. Buckley, and S. Wang, “Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage,” Chemical Engineering Journal, vol. 187, pp. 415–420, 2012. View at: Publisher Site | Google Scholar
  161. C. Chen, J. Kim, and W.-S. Ahn, “Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure,” Fuel, vol. 95, pp. 360–364, 2012. View at: Publisher Site | Google Scholar
  162. M. G. Plaza, C. Pevida, B. Arias et al., “Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture,” Journal of Thermal Analysis and Calorimetry, vol. 92, no. 2, pp. 601–606, 2008. View at: Publisher Site | Google Scholar
  163. A.-Y. Park, H. Kwon, A. J. Woo, and S.-J. Kim, “Layered double hydroxide surface modified with (3-aminopropyl) triethoxysilane by covalent bonding,” Advanced Materials, vol. 17, no. 1, pp. 106–109, 2005. View at: Publisher Site | Google Scholar
  164. N. S. Nhlapo, “Intercalation of fatty acids into layered double hydroxides,” Tech. Rep., Department of Chemistery Faculty of Natural and Agricultural sciences South Africa, University of Pretoria, 2008. View at: Google Scholar
  165. M. S. Shafeeyan, W. M. A. Wan Daud, A. Houshmand, and A. Arami-Niya, “The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents,” Fuel, vol. 94, pp. 465–472, 2012. View at: Publisher Site | Google Scholar
  166. M. Clausse, J. Merel, and F. Meunier, “Numerical parametric study on CO2 capture by indirect thermal swing adsorption,” International Journal of Greenhouse Gas Control, vol. 5, no. 5, pp. 1206–1213, 2011. View at: Publisher Site | Google Scholar
  167. L. Wang, Z. Liu, P. Li, J. Yu, and A. E. Rodrigues, “Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process,” Chemical Engineering Journal, vol. 197, pp. 151–161, 2012. View at: Google Scholar
  168. A. R. Kulkarni and D. S. Sholl, “Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2from Air,” Industrial & Engineering Chemistry Research, vol. 51, pp. 8631–8645, 2012. View at: Google Scholar
  169. J. Merel, M. Clausse, and F. Meunier, “Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites,” Industrial and Engineering Chemistry Research, vol. 47, no. 1, pp. 209–215, 2008. View at: Publisher Site | Google Scholar
  170. S. Lucas, M. P. Calvo, C. Palencia, and M. J. Cocero, “Mathematical model of supercritical CO2 adsorption on activated carbon: effect of operating conditions and adsorption scale-up,” Journal of Supercritical Fluids, vol. 32, no. 1–3, pp. 193–201, 2004. View at: Publisher Site | Google Scholar
  171. C. Hoeger, C. Bence, S. S. Burt, A. Baxter, and L. Baxter, “Cryogenic CO2 capture for improved efficiency at reduced cost,” in Proceedings of the AIChE Annual Meeting, November 2010. View at: Google Scholar
  172. S. Burt, A. Baxter, and L. Baxter, “Cryogenic CO2 capture to control climate change emissions,” in Proceedings of the 34th International Technical Conference on Clean Coal & Fuel Systems, May 2009. View at: Google Scholar
  173. M. J. Tuinier, H. P. Hamers, and M. van Sint Annaland, “Techno-economic evaluation of cryogenic CO2 capture-A comparison with absorption and membrane technology,” International Journal of Greenhouse Gas Control, vol. 5, no. 6, pp. 1559–1565, 2011. View at: Publisher Site | Google Scholar
  174. A. Hart and N. Gnanendran, “Cryogenic CO2 capture in natural gas,” Energy Procedia, vol. 1, pp. 697–706, 2009. View at: Google Scholar
  175. G. Xu, L. Li, Y. Yang, L. Tian, T. Liu, and K. Zhang, “A novel CO2 cryogenic liquefaction and separation system,” Energy, vol. 42, pp. 522–529, 2012. View at: Publisher Site | Google Scholar
  176. B. Shimekit and H. Mukhtar, “Natural gas purification technologies-major advances for CO2 separation and future directions,” in Advances in Natural Gas Technology, A. M. Hamid, Ed., pp. 235–270, InTech, China, 2012. View at: Google Scholar
  177. M. T. Ravanchi, S. Sahebdelfar, and F. T. Zangeneh, “Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions,” Frontiers of Chemical Engineering in China, vol. 5, no. 2, pp. 173–178, 2011. View at: Publisher Site | Google Scholar
  178. R. P. Lively, W. J. Koros, and J. R. Johnson, “Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds,” Chemical Engineering Science, vol. 71, pp. 97–103, 2012. View at: Publisher Site | Google Scholar
  179. D. Clodic, R. El Hitti, M. Younes, A. Bill, and F. Casier, “CO2capture by anti-sublimation thermo-economic process evaluation,” in Proceedings of the 4th Annual Conference on Carbon Capture & Sequestration, pp. 2–5, Alexandria, Va, USA, 2005. View at: Google Scholar
  180. J.-M. Amann, M. Kanniche, and C. Bouallou, “Natural gas combined cycle power plant modified into an O2/CO2 cycle for CO2 capture,” Energy Conversion and Management, vol. 50, no. 3, pp. 510–521, 2009. View at: Publisher Site | Google Scholar
  181. C.-F. Song, Y. Kitamura, S.-H. Li, and K. Ogasawara, “Design of a cryogenic CO2 capture system based on Stirling coolers,” International Journal of Greenhouse Gas Control, vol. 7, pp. 107–114, 2012. View at: Publisher Site | Google Scholar
  182. M. J. Tuinier, M. van Sint Annaland, and J. A. M. Kuipers, “A novel process for cryogenic CO2 capture using dynamically operated packed beds-An experimental and numerical study,” International Journal of Greenhouse Gas Control, vol. 5, no. 4, pp. 694–701, 2011. View at: Publisher Site | Google Scholar
  183. P. Chiesa, S. Campanari, and G. Manzolini, “CO2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells,” International Journal of Hydrogen Energy, vol. 36, no. 16, pp. 10355–10365, 2011. View at: Publisher Site | Google Scholar
  184. E. Favre, “Membrane processes and postcombustion carbon dioxide capture: challenges and prospects,” Chemical Engineering Journal, vol. 171, no. 3, pp. 782–793, 2011. View at: Publisher Site | Google Scholar
  185. B. Freeman and Y. Yampolskii, Membrane Gas Separation, John Wiley & Sons, 2010.
  186. R. Bounaceur, N. Lape, D. Roizard, C. Vallieres, and E. Favre, “Membrane processes for post-combustion carbon dioxide capture: a parametric study,” Energy, vol. 31, no. 14, pp. 2220–2234, 2006. View at: Publisher Site | Google Scholar
  187. D. Aaron and C. Tsouris, “Separation of CO2 from flue gas: a review,” Separation Science and Technology, vol. 40, no. 1–3, pp. 321–348, 2005. View at: Publisher Site | Google Scholar
  188. A. Xu, A. Yang, S. Young, D. deMontigny, and P. Tontiwachwuthikul, “Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption,” Journal of Membrane Science, vol. 311, no. 1-2, pp. 153–158, 2008. View at: Publisher Site | Google Scholar
  189. T.-L. Chew, A. L. Ahmad, and S. Bhatia, “Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2),” Advances in Colloid and Interface Science, vol. 153, no. 1-2, pp. 43–57, 2010. View at: Publisher Site | Google Scholar
  190. C. A. Scholes, G. Q. Chen, G. W. Stevens, and S. E. Kentish, “Nitric oxide and carbon monoxide permeation through glassy polymeric membranes for carbon dioxide separation,” Chemical Engineering Research and Design, vol. 89, no. 9, pp. 1730–1736, 2011. View at: Publisher Site | Google Scholar
  191. C. A. Scholes, S. E. Kentish, and G. W. Stevens, “Carbon dioxide separation through polymeric membrane systems for flue gas applications,” Recent Patents on Chemical Engineering, vol. 1, pp. 52–66, 2008. View at: Google Scholar
  192. L. A. El-Azzami and E. A. Grulke, “Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes,” Journal of Membrane Science, vol. 323, no. 2, pp. 225–234, 2008. View at: Publisher Site | Google Scholar
  193. C. E. Powell and G. G. Qiao, “Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases,” Journal of Membrane Science, vol. 279, no. 1-2, pp. 1–49, 2006. View at: Publisher Site | Google Scholar
  194. L. A. El-Azzami and E. A. Grulke, “Carbon dioxide separation from hydrogen and nitrogen: facilitated transport in arginine salt-chitosan membranes,” Journal of Membrane Science, vol. 328, no. 1-2, pp. 15–22, 2009. View at: Publisher Site | Google Scholar
  195. G. Xomeritakis, C.-Y. Tsai, and C. J. Brinker, “Microporous sol-gel derived aminosilicate membrane for enhanced carbon dioxide separation,” Separation and Purification Technology, vol. 42, no. 3, pp. 249–257, 2005. View at: Publisher Site | Google Scholar
  196. E. Favre, “Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption?” Journal of Membrane Science, vol. 294, no. 1-2, pp. 50–59, 2007. View at: Publisher Site | Google Scholar
  197. A. Julbe, “Chapter 6 Zeolite membranes—synthesis, characterization and application,” Studies in Surface Science and Catalysis, vol. 168, pp. 181–219, 2007. View at: Publisher Site | Google Scholar
  198. D. W. Shin, S. H. Hyun, C. H. Cho, and M. H. Han, “Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes,” Microporous and Mesoporous Materials, vol. 85, no. 3, pp. 313–323, 2005. View at: Publisher Site | Google Scholar
  199. M. Anderson and Y. S. Lin, “Carbonate-ceramic dual-phase membrane for carbon dioxide separation,” Journal of Membrane Science, vol. 357, no. 1-2, pp. 122–129, 2010. View at: Publisher Site | Google Scholar
  200. D. Shekhawat, D. R. Luebke, and H. W. Pennline, “A review of carbon dioxide selective membranes,” A Topical Report DOE/NETL-2003/1200, Department of Energy, National Energy Technology Laboratory, 2003. View at: Google Scholar
  201. P. Kumar, S. Kim, J. Ida, and V. V. Guliants, “Polyethyleneimine-modified MCM-48 membranes: effect of water vapor and feed concentration on N2/CO2 selectivity,” Industrial and Engineering Chemistry Research, vol. 47, no. 1, pp. 201–208, 2008. View at: Publisher Site | Google Scholar
  202. T. C. Merkel, H. Lin, X. Wei, and R. Baker, “Power plant post-combustion carbon dioxide capture: an opportunity for membranes,” Journal of Membrane Science, vol. 359, no. 1-2, pp. 126–139, 2010. View at: Publisher Site | Google Scholar
  203. Y. Cai, Z. Wang, C. Yi, Y. Bai, J. Wang, and S. Wang, “Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes,” Journal of Membrane Science, vol. 310, no. 1-2, pp. 184–196, 2008. View at: Publisher Site | Google Scholar
  204. L. Deng, T.-J. Kim, and M.-B. Hägg, “Facilitated transport of CO2 in novel PVAm/PVA blend membrane,” Journal of Membrane Science, vol. 340, no. 1-2, pp. 154–163, 2009. View at: Publisher Site | Google Scholar
  205. X. Ren, J. Ren, H. Li, S. Feng, and M. Deng, “Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation,” International Journal of Greenhouse Gas Control, vol. 8, pp. 111–120, 2012. View at: Publisher Site | Google Scholar
  206. L. Liu, A. Chakma, and X. Feng, “Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen,” Chemical Engineering Journal, vol. 105, no. 1-2, pp. 43–51, 2004. View at: Publisher Site | Google Scholar
  207. A. Car, C. Stropnik, W. Yave, and K.-V. Peinemann, “PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation,” Journal of Membrane Science, vol. 307, no. 1, pp. 88–95, 2008. View at: Publisher Site | Google Scholar
  208. W. Yave, A. Car, and K.-V. Peinemann, “Nanostructured membrane material designed for carbon dioxide separation,” Journal of Membrane Science, vol. 350, no. 1-2, pp. 124–129, 2010. View at: Publisher Site | Google Scholar
  209. Y. Gu and S. T. Oyama, “High molecular permeance in a poreless ceramic membrane,” Advanced Materials, vol. 19, no. 12, pp. 1636–1640, 2007. View at: Publisher Site | Google Scholar
  210. M. Reif and R. Dittmeyer, “Porous, catalytically active ceramic membranes for gas-liquid reactions: a comparison between catalytic diffuser and forced through flow concept,” Catalysis Today, vol. 82, no. 1–4, pp. 3–14, 2003. View at: Publisher Site | Google Scholar
  211. K. Kusakabe, T. Kuroda, and S. Morooka, “Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes,” Journal of Membrane Science, vol. 148, no. 1, pp. 13–23, 1998. View at: Publisher Site | Google Scholar
  212. J. van den Bergh, W. Zhu, J. Gascon, J. A. Moulijn, and F. Kapteijn, “Separation and permeation characteristics of a DD3R zeolite membrane,” Journal of Membrane Science, vol. 316, no. 1-2, pp. 35–45, 2008. View at: Publisher Site | Google Scholar
  213. M. P. Bernal, J. Coronas, M. Menéndez, and J. Santamaría, “Separation of CO2/N2 mixtures using MFI-type zeolite membranes,” AIChE Journal, vol. 50, no. 1, pp. 127–135, 2004. View at: Publisher Site | Google Scholar
  214. Z. Rui, H. Ji, and Y. S. Lin, “Modeling and analysis of ceramic-carbonate dual-phase membrane reactor for carbon dioxide reforming with methane,” International Journal of Hydrogen Energy, vol. 36, no. 14, pp. 8292–8300, 2011. View at: Publisher Site | Google Scholar
  215. Z. Rui, M. Anderson, Y. S. Lin, and Y. Li, “Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes,” Journal of Membrane Science, vol. 345, no. 1-2, pp. 110–118, 2009. View at: Publisher Site | Google Scholar
  216. S. J. Metz, M. H. V. Mulder, and M. Wessling, “Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate) block copolymers,” Macromolecules, vol. 37, no. 12, pp. 4590–4597, 2004. View at: Publisher Site | Google Scholar
  217. Z. Xu, J. Wang, W. Chen, and Y. Xu, “Separation and fixation of carbon dioxide using polymeric membrane contactor,” in Proceedings of the 1st National Conference on Carbon Sequestration, 2001. View at: Google Scholar
  218. D. Dortmundt and K. Doshi, Recent Developments in CO2 Removal Membrane Technology, UOP LLC, 1999.
  219. C. A. Scholes, S. E. Kentish, and G. W. Stevens, “The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture,” Energy Procedia, vol. 1, pp. 311–317, 2009. View at: Google Scholar
  220. K. Hunger, N. Schmeling, H. B. Jeazet, C. Janiak, C. Staudt, and K. Kleinermanns, “Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation,” Membrane, vol. 2, pp. 727–763, 2012. View at: Google Scholar
  221. S. R. Reijerkerk, “Polyether based block copolymer membranes for CO2 separation,” in Science and Technology, University of Twente, Enschede, The Netherlands, 2010. View at: Google Scholar
  222. A. L. B. Ahmad, Z. A. Jawad, S. C. Low, and H. S. Zein, “Prospect of mixed matrix membrane towards CO2Separation,” Journal of Membrane Science & Technology, vol. 2, article e110, 2012. View at: Google Scholar
  223. C. A. Scholes, G. Q. Chen, G. W. Stevens, and S. E. Kentish, “Plasticization of ultra-thin polysulfone membranes by carbon dioxide,” Journal of Membrane Science, vol. 346, no. 1, pp. 208–214, 2010. View at: Publisher Site | Google Scholar
  224. N. Du, H. B. Park, G. P. Robertson et al., “Polymer nanosieve membranes for CO2-capture applications,” Nature Materials, vol. 10, no. 5, pp. 372–375, 2011. View at: Publisher Site | Google Scholar
  225. P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, and S. Y. Suen, “Ionic liquid membranes for carbon dioxide-methane separation,” Journal of Membrane Science, vol. 383, no. 1-2, pp. 262–271, 2011. View at: Publisher Site | Google Scholar
  226. O. G. Nik, X. Y. Chen, and S. Kaliaguine, “Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation,” Journal of Membrane Science, vol. 379, no. 1-2, pp. 468–478, 2011. View at: Publisher Site | Google Scholar
  227. Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, “A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials,” Journal of Membrane Science, vol. 350, no. 1-2, pp. 117–123, 2010. View at: Publisher Site | Google Scholar
  228. A. Kovvali and G. Obuskovic, “Immobilized liquid membranes for CO2 separation',” in Proceedings of the Preprints of Symposia-American Chemical Society, pp. 665–667, Division of Fuel Chemistry, American Chemical Society, 2000. View at: Google Scholar
  229. Z. Wang, L. E. K. Achenie, S. J. Khativ, and S. T. Oyama, “Simulation study of single-gas permeation of carbon dioxide and methane in hybrid inorganic-organic membrane,” Journal of Membrane Science, vol. 387-388, no. 1, pp. 30–39, 2012. View at: Publisher Site | Google Scholar
  230. S.-P. Yan, M.-X. Fang, W.-F. Zhang et al., “Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting,” Fuel Processing Technology, vol. 88, no. 5, pp. 501–511, 2007. View at: Publisher Site | Google Scholar
  231. J.-L. Li and B.-H. Chen, “Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors,” Separation and Purification Technology, vol. 41, no. 2, pp. 109–122, 2005. View at: Publisher Site | Google Scholar
  232. Y.-S. Kim and S.-M. Yang, “Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents,” Separation and Purification Technology, vol. 21, no. 1-2, pp. 101–109, 2000. View at: Publisher Site | Google Scholar
  233. K. Sugiura, K. Takei, K. Tanimoto, and Y. Miyazaki, “The carbon dioxide concentrator by using MCFC,” Journal of Power Sources, vol. 118, no. 1-2, pp. 218–227, 2003. View at: Publisher Site | Google Scholar
  234. H. Herzog, “Assessing the feasibility of capturing CO2 from the air,” Tech. Rep., MIT Laboratory for Energy and the Environment, Massachusetts Institute of Techology, Cambridge, Mass, USA, 2003. View at: Google Scholar
  235. M. R. M. Abu-Zahra, J. P. M. Niederer, P. H. M. Feron, and G. F. Versteeg, “CO2 capture from power plants. Part II. A parametric study of the economical performance based on mono-ethanolamine,” International Journal of Greenhouse Gas Control, vol. 1, no. 2, pp. 135–142, 2007. View at: Publisher Site | Google Scholar

Copyright © 2014 Mohammad Songolzadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

40794 Views | 14238 Downloads | 119 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.