Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 841680, 12 pages
Research Article

Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems

1Inter-University Centre for Telecommunications and Informatics (ETIK), Kassai straße 26, Debrecen H-4028, Hungary
2Department of Broadband Infocommunications and Electromagnetic Theory, Budapest University of Technology and Economics (BME), Egry József utca 18, Budapest H-1111, Hungary

Received 30 August 2013; Accepted 10 October 2013; Published 16 January 2014

Academic Editors: J. Bajo and J. Dauwels

Copyright © 2014 Zsolt Kollár et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER).