Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 896206, 6 pages
http://dx.doi.org/10.1155/2014/896206
Review Article

Competing Endogenous RNA: The Key to Posttranscriptional Regulation

1Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal 700064, India
2Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India

Received 22 August 2013; Accepted 10 December 2013; Published 2 February 2014

Academic Editors: C. Lecoeur, C. Y. Liu, and A. C. Manna

Copyright © 2014 Rituparno Sen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Seitz, “Redefining MicroRNA targets,” Current Biology, vol. 19, no. 10, pp. 870–873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Thomas, J. Lieberman, and A. Lal, “Desperately seeking microRNA targets,” Nature Structural and Molecular Biology, vol. 17, no. 10, pp. 1169–1174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, “Mammalian microRNAs predominantly act to decrease target mRNA levels,” Nature, vol. 466, no. 7308, pp. 835–840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A ceRNA hypothesis: the rosetta stone of a hidden RNA language?” Cell, vol. 146, no. 3, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Cesana and G. Q. Daley, “Deciphering the rules of ceRNA networks,” Proceedings of the National Academy of Sciences, vol. 110, no. 18, pp. 7112–7113, 2013. View at Publisher · View at Google Scholar
  8. L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi, “A coding-independent function of gene and pseudogene mRNAs regulates tumour biology,” Nature, vol. 465, no. 7301, pp. 1033–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Cesana, D. Cacchiarelli, I. Legnini et al., “A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA,” Cell, vol. 147, no. 2, pp. 358–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Ebert and P. A. Sharp, “MicroRNA sponges: progress and possibilities,” RNA, vol. 16, no. 11, pp. 2043–2050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. F. A. Karreth, Y. Tay, D. Perna et al., “In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma,” Cell, vol. 147, no. 2, pp. 382–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Tay, L. Kats, L. Salmena et al., “Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs,” Cell, vol. 147, no. 2, pp. 344–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Sumazin, X. Yang, H. S. Chiu et al., “An extensive MicroRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma,” Cell, vol. 147, no. 2, pp. 370–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Jeyapalan, Z. Deng, T. Shatseva, L. Fang, C. He, and B. B. Yang, “Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis,” Nucleic Acids Research, vol. 39, no. 8, pp. 3026–3041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Y. Lee, Z. Jeyapalan, L. Fang et al., “Expression of versican 3′-untranslated region modulates endogenous microrna functions,” PLoS ONE, vol. 5, no. 10, Article ID e13599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Wang, X. Liu, H. Wu et al., “CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer,” Nucleic Acids Research, vol. 38, no. 16, pp. 5366–5383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Fan, X. Li, W. Jiang, Y. Huang, J. Li, and Z. Wang, “A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells,” Experimental and Therapeutic Medicine, vol. 5, no. 4, pp. 1143–1146, 2013. View at Google Scholar
  18. W. Arancio, C. Giordano, and G. Pizzolanti, “A ceRNA analysis on LMNA gene focusing on the Hutchinson-Gilford progeria syndrome,” Journal of Clinical Bioinformatics, vol. 3, no. 1, article 2, 2013. View at Publisher · View at Google Scholar
  19. D. Cazalla, T. Yario, and J. Steitz, “Down-regulation of a host MicroRNA by a herpesvirus saimiri noncoding RNA,” Science, vol. 328, no. 5985, pp. 1563–1566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Ala, F. A. Karreth, C. Bosia et al., “Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments,” Proceedings of the National Academy of Sciences, vol. 110, no. 18, pp. 7154–7159, 2013. View at Publisher · View at Google Scholar
  21. C. Bosia, A. Pagnani, and R. Zecchina, “Modelling competing endogenous RNA networks,” PLoS ONE, vol. 8, no. 6, Article ID e66609, 2013. View at Google Scholar
  22. A. Sarver and S. Subramanian, “Competing endogenous RNA database,” Bioinformation, vol. 8, no. 15, pp. 731–733, 2012. View at Publisher · View at Google Scholar
  23. T. Derrien, R. Johnson, G. Bussotti et al., “The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression,” Genome Research, vol. 22, no. 9, pp. 1775–1789, 2012. View at Publisher · View at Google Scholar
  24. S. Loewer, M. N. Cabili, M. Guttman et al., “Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells,” Nature Genetics, vol. 42, no. 12, pp. 1113–1117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Guttman, J. Donaghey, B. W. Carey et al., “LincRNAs act in the circuitry controlling pluripotency and differentiation,” Nature, vol. 477, no. 7364, pp. 295–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Jeggari, D. S. Marks, and E. Larsson, “miRcode: a map of putative microRNA target sites in the long non-coding transcriptome,” Bioinformatics, vol. 28, no. 15, pp. 2062–2063, 2012. View at Publisher · View at Google Scholar
  27. S. Ghosal, S. Das, and J. Chakrabarti, “Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells,” Stem Cells and Development, vol. 22, no. 16, pp. 2240–2253, 2013. View at Publisher · View at Google Scholar
  28. Y. Wang, Z. Xu, J. Jiang et al., “Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal,” Developmental Cell, vol. 25, no. 1, pp. 69–80, 2013. View at Publisher · View at Google Scholar
  29. T. B. Hansen, J. Kjems, and C. K. Damgaard, “Circular RNA and miR-7 in cancer,” Cancer Research, vol. 73, no. 18, pp. 5609–5612, 2013. View at Publisher · View at Google Scholar
  30. S. Ghosal, S. Das, R. Sen, P. Basak, and J. Chakrabarti, “Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits,” Frontiers in Genetics, vol. 4, article 283, 2013. View at Publisher · View at Google Scholar
  31. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar