Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 906038, 16 pages
http://dx.doi.org/10.1155/2014/906038
Review Article

Role of EEG as Biomarker in the Early Detection and Classification of Dementia

1Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, Baghdad University, Baghdad, Iraq
3Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
4Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan, Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
5Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK

Received 17 January 2014; Revised 27 March 2014; Accepted 15 April 2014; Published 30 June 2014

Academic Editor: Giuliano Binetti

Copyright © 2014 Noor Kamal Al-Qazzaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Pond, “Dementia an update on management,” Australian Family Physician, vol. 41, no. 12, pp. 936–939, 2012. View at Google Scholar · View at Scopus
  2. A. Cedazo-Minguez and B. Winblad, “Biomarkers for Alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects,” Experimental Gerontology, vol. 45, no. 1, pp. 5–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Hampel, R. Frank, K. Broich et al., “Biomarkers for alzheimer's disease: academic, industry and regulatory perspectives,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 560–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Jeong, “EEG dynamics in patients with Alzheimer's disease,” Clinical Neurophysiology, vol. 115, no. 7, pp. 1490–1505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. R. John, L. S. Prichep, J. Fridman, and P. Easton, “Neurometrics: computer-assisted differential diagnosis of brain dysfunctions,” Science, vol. 239, no. 4836, pp. 162–169, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. A. F. Leuchter, I. A. Cook, T. F. Newton et al., “Regional differences in brain electrical activity in dementia: use of spectral power and spectral ratio measures,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 6, pp. 385–393, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Hampel, S. Lista, S. J. Teipel et al., “Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: a long-range point of view beyond 2020,” Biochemical Pharmacology, vol. 88, no. 4, pp. 426–449, 2014. View at Publisher · View at Google Scholar
  8. P. Luu, D. M. Tucker, R. Englander, A. Lockfeld, H. Lutsep, and B. Oken, “Localizing acute stroke-related EEG changes: assessing the effects of spatial undersampling,” Journal of Clinical Neurophysiology, vol. 18, no. 4, pp. 302–317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Snyder, J. R. Hall, S. L. Cornwell, and J. D. Falk, “Addition of EEG improves accuracy of a logistic model that uses neuropsychological and cardiovascular factors to identify dementia and MCI,” Psychiatry Research, vol. 186, no. 1, pp. 97–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Borson, L. Frank, P. J. Bayley et al., “Improving dementia care: the role of screening and detection of cognitive impairment,” Alzheimer's and Dementia, vol. 9, no. 2, pp. 151–159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. S. T. DeKosky and K. Marek, “Looking backward to move forward: early detection of neurodegenerative disorders,” Science, vol. 302, no. 5646, pp. 830–834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. B. Gorelick, “Status of risk factors for dementia associated with stroke,” Stroke, vol. 28, no. 2, pp. 459–463, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Jeong, J.-H. Chae, S. Y. Kim, and S.-H. Han, “Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia,” Journal of Clinical Neurophysiology, vol. 18, no. 1, pp. 58–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. C. Schrijvers, Biomarkers and Risk Factors of Dementia, Erasmus University, Rotterdam, The Netherlands, 2011.
  16. J. T. Coyle, D. L. Price, and M. R. DeLong, “Alzheimer's disease: a disorder of cortical cholinergic innervation,” Science, vol. 219, no. 4589, pp. 1184–1190, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. A. V. Terry Jr. and J. J. Buccafusco, “The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, pp. 821–827, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. E. Jackson and P. J. Snyder, “Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer's disease,” Alzheimer's and Dementia, vol. 4, no. 1, pp. S137–S143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. McVeigh and P. Passmore, “Vascular dementia: prevention and treatment,” Clinical Interventions in Aging, vol. 1, no. 3, pp. 229–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ruitenberg, A. Ott, J. C. van Swieten, A. Hofman, and M. M. Breteler, “Incidence of dementia: does gender make a difference?” Neurobiology of Aging, vol. 22, no. 4, pp. 575–580, 2001. View at Google Scholar
  21. G. C. Román, “Vascular dementia: distinguishing characteristics, treatment, and prevention,” Journal of the American Geriatrics Society, vol. 51, no. 5, supplement 2, pp. S296–S304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. C. Román, “Vascular dementia may be the most common form of dementia in the elderly,” Journal of the Neurological Sciences, vol. 203-204, pp. 7–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. R. Thal, L. T. Grinberg, and J. Attems, “Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain,” Experimental Gerontology, vol. 47, no. 11, pp. 816–824, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Jacova, A. Kertesz, M. Blair, J. D. Fisk, and H. H. Feldman, “Neuropsychological testing and assessment for dementia,” Alzheimer's and Dementia, vol. 3, no. 4, pp. 299–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. C. R. Jack Jr., M. S. Albert, D. S. Knopman et al., “Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 257–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 270–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. McKhann, D. S. Knopman, H. Chertkow et al., “The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 263–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 280–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group * under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Sheng, L. F. Cheng, C. B. Law, H. L. Li, K. M. Yeung, and K. K. Lau, “Coexisting cerebral infarction in Alzheimer's disease is associated with fast dementia progression: applying the National Institute for Neurological Disorders and Stroke/Association Internationale pour la Recherche et l'Enseignement en Neurosciences neuroimaging criteria in Alzheimer's disease with concomitant cerebral infarction,” Journal of the American Geriatrics Society, vol. 55, no. 6, pp. 918–922, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 1994.
  33. C. P. Hughes, L. Berg, and W. L. Danziger, “A new clinical scale for the staging of dementia,” The British Journal of Psychiatry, vol. 140, no. 6, pp. 566–572, 1982. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Yesavage, T. L. Brink, T. L. Rose et al., “Development and validation of a geriatric depression screening scale: A preliminary report,” Journal of Psychiatric Research, vol. 17, no. 1, pp. 37–49, 1982. View at Publisher · View at Google Scholar · View at Scopus
  35. W. G. Rosen, R. D. Terry, P. A. Fuld, R. Katzman, and A. Peck, “Pathological verification of ischemic score in differentiation of dementias,” Annals of Neurology, vol. 7, no. 5, pp. 486–488, 1980. View at Publisher · View at Google Scholar · View at Scopus
  36. M. P. Lawton and E. M. Brody, “Assessment of older people: self-maintaining and instrumental activities of daily living,” The Gerontologist, vol. 19, no. 3, pp. 179–186, 1969. View at Google Scholar
  37. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini-mental state,” A prac-32, 1998.
  38. T. Smith, N. Gildeh, and C. Holmes, “The Montreal cognitive assessment: validity and utility in a memory clinic setting,” Canadian Journal of Psychiatry, vol. 52, no. 5, pp. 329–332, 2007. View at Google Scholar · View at Scopus
  39. P. S. Mathuranath, P. J. Nestor, G. E. Berrios, W. Rakowicz, and J. R. Hodges, “A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia,” Neurology, vol. 55, no. 11, pp. 1613–1620, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Amodio, H. Wenin, F. Del Piccolo et al., “Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables,” Aging: Clinical and Experimental Research, vol. 14, no. 2, pp. 117–131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. I. Shulman, “Clock-drawing: is it the ideal cognitive screening test?” International Journal of Geriatric Psychiatry, vol. 15, no. 6, pp. 548–561.
  42. P. Caffarra, G. Vezzadini, F. Dieci, F. Zonato, and A. Venneri, “Rey-Osterrieth complex figure: normative values in an Italian population sample,” Neurological Sciences, vol. 22, no. 6, pp. 443–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. G. A. Carlesimo, C. Caltagirone, G. Gainotti et al., “The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment,” European Neurology, vol. 36, no. 6, pp. 378–384, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Dorval, P. T. Nelson, and S. S. Hébert, “Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers,” Frontiers in Molecular Neuroscience, vol. 6, article 24, 2013. View at Google Scholar
  45. J. A. Sonnen, K. S. Montine, J. F. Quinn, J. A. Kaye, J. C. Breitner, and T. J. Montine, “Biomarkers for cognitive impairment and dementia in elderly people,” The Lancet Neurology, vol. 7, no. 8, pp. 704–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S.-S. Poil, W. de Haan, W. M. van der, H. D. Flier, P. Scheltens, and K. Linkenkaer-Hansen, “Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage,” Frontiers in Aging Neuroscience, vol. 5, article 58, 2013. View at Google Scholar
  47. N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” JAMA: Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. G. P. Paraskevas, E. Kapaki, S. G. Papageorgiou et al., “CSF biomarker profile and diagnostic value in vascular dementia,” European Journal of Neurology, vol. 16, no. 2, pp. 205–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. V. Frankfort, L. R. Tulner, J. P. C. M. van Campen, M. M. Verbeekl, R. W. M. M. Jansen, and J. H. Beijnen, “Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature,” Current Clinical Pharmacology, vol. 3, no. 2, pp. 123–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Folin, S. Baiguera, M. T. Conconi et al., “Apolipoprotein E as vascular risk factor in neurodegenerative dementia,” International Journal of Molecular Medicine, vol. 14, no. 4, pp. 609–613, 2004. View at Google Scholar · View at Scopus
  51. P. M. Rossini, S. Rossi, C. Babiloni, and J. Polich, “Clinical neurophysiology of aging brain: from normal aging to neurodegeneration,” Progress in Neurobiology, vol. 83, no. 6, pp. 375–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. A. L. Schneider and K. G. Jordan, “Regional wttenuation without Delta (RAWOD): a distinctive EEG pattern that can aid in the diagnosis and management of severe acute ischemic stroke,” The American Journal of Electroneurodiagnostic Technology, vol. 45, no. 2, pp. 102–117, 2005. View at Google Scholar · View at Scopus
  53. P. R. Davidson, R. D. Jones, and M. T. Peiris, “EEG-based lapse detection with high temporal resolution,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 5, pp. 832–839, 2007. View at Publisher · View at Google Scholar
  54. F. Vecchio, C. Babiloni, R. Lizio et al., “Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: a review,” Supplements to Clinical Neurophysiology, vol. 62, pp. 223–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Henderson, E. Ifeachor, N. Hudson et al., “Development and assessment of methods for detecting dementia using the human electroencephalogram,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1557–1568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. J. Claus, B. W. Ongerboer de Visser, G. J. M. Walstra, A. Hijdra, B. Verbeeten Jr., and W. A. van Gool, “Quantitative spectral electroencephalography in predicting survival in patients with early Alzheimer disease,” Archives of Neurology, vol. 55, no. 8, pp. 1105–1111, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. J. J. Claus, B. W. Ongerboer de Visser, L. J. Bour et al., “Determinants of quantitative spectral electroencephalography in early Alzheimer's disease: cognitive function, regional cerebral blood flow, and computed tomography,” Dementia and Geriatric Cognitive Disorders, vol. 11, no. 2, pp. 81–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Helkala, V. Laulumaa, R. Soikkeli, J. Partanen, H. Soininen, and P. J. Riekkinen, “Slow-wave activity in the spectral analysis of the electroencephalogram is associated with cortical dysfunctions in patients with Alzheimer's disease,” Behavioral Neuroscience, vol. 105, no. 3, pp. 409–415, 1991. View at Publisher · View at Google Scholar · View at Scopus
  59. A. A. Petrosian, D. V. Prokhorov, W. Lajara-Nanson, and R. B. Schiffer, “Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG,” Clinical Neurophysiology, vol. 112, no. 8, pp. 1378–1387, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Henderson, E. Ifeachor, H. Wimalaratna, T. Allen, and R. Hudson, “Prospects for routine detection of dementia using the fractal dimension of the human electroencephalogram,” IEE Proceedings—Science Measurement and Technology, vol. 147, no. 6, pp. 321–326, 2000. View at Publisher · View at Google Scholar
  61. P. Zhao and E. Ifeachor, “EEG assessment of Alzheimers diseases using universal compression algorithm”.
  62. J. G. Webster, Medical Instrumentation Application and Design, Wiley, New York, NY, USA, 4th edition, 1998.
  63. E. J. Austin, R. J. Wilkus, and W. T. Longstreth Jr., “Etiology and prognosis of alpha coma,” Neurology, vol. 38, no. 5, pp. 773–777, 1988. View at Publisher · View at Google Scholar · View at Scopus
  64. D. V. Moretti, O. Zanetti, G. Binetti, and G. B. Frisoni, “Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 917537, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. D. V. Moretti, C. Miniussi, G. Frisoni et al., “Vascular damage and EEG markers in subjects with mild cognitive impairment,” Clinical Neurophysiology, vol. 118, no. 8, pp. 1866–1876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. D. A. Pizzagalli, “Electroencephalography and high-density electrophysiological source localization,” in Handbook of Psychophysiology, pp. 56–84, Cambridge University Press, New York, NY, USA, 3rd edition, 2007. View at Publisher · View at Google Scholar
  67. E. R. John, H. Ahn, L. Prichep, M. Trepetin, D. Brown, and H. Kaye, “Developmental equations for the electroencephalogram,” Science, vol. 210, no. 4475, pp. 1255–1258, 1980. View at Publisher · View at Google Scholar · View at Scopus
  68. T. R. Oakes, D. A. Pizzagalli, A. M. Hendrick et al., “Functional coupling of simultaneous electrical and metabolic activity in the human brain,” Human Brain Mapping, vol. 21, no. 4, pp. 257–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Saletu, P. Anderer, E. Paulus et al., “EEG brain mapping in diagnostic and therapeutic assessment of dementia,” Alzheimer Disease and Associated Disorders, vol. 5, no. 1, pp. S57–S75, 1991. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Signorino, E. Pucci, N. Belardinelli, G. Nolfe, and F. Angeleri, “EEG spectral analysis in vascular and Alzheimer dementia,” Electroencephalography and Clinical Neurophysiology, vol. 94, no. 5, pp. 313–325, 1995. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Pucci, G. Cacchiò, R. Angeloni et al., “EEG spectral analysis in Alzheimer's disease and different degenerative dementias,” Archives of Gerontology and Geriatrics, vol. 26, no. 3, pp. 283–297, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. E. B. Gordon and M. Sim, “The E.E.G. in presenile dementia,” Journal of Neurology Neurosurgery and Psychiatry, vol. 30, no. 3, pp. 285–291, 1967. View at Publisher · View at Google Scholar · View at Scopus
  73. K. J. Stam, D. L. J. Tavy, B. Jelles, H. A. M. Achtereekte, J. P. J. Slaets, and R. W. M. Keunen, “Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson's disease,” Brain Topography, vol. 7, no. 2, pp. 141–150, 1994. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Berger, “Über das elektrenkephalogramm des menschen,” Archiv für Psychiatrie und Nervenkrankheiten, vol. 87, no. 1, pp. 527–570, 1929. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Berger, “Über das elektrenkephalogramm des menschen,” European Archives of Psychiatry and Clinical Neuroscience, vol. 98, no. 1, pp. 231–254, 1933. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Rosén, “Electroencephalography as a diagnostic tool in dementia,” Dementia and Geriatric Cognitive Disorders, vol. 8, no. 2, pp. 110–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. D. V. Moretti, G. B. Frisoni, C. Fracassi et al., “MCI patients' EEGs show group differences between those who progress and those who do not progress to AD,” Neurobiology of Aging, vol. 32, no. 4, pp. 563–571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Moretti, D. Paternicò, G. Binetti, O. Zanetti, and G. Frisoni, “Relationship between EEG alpha3/alpha2 ration and the nucleus accumbens in subjects with mild cognitive impairment,” Journal of Neurology & Neurophysiology, vol. 4, pp. 1–6, 2013. View at Google Scholar
  79. D. V. Moretti, A. Prestia, G. Binetti, O. Zanetti, and G. B. Frisoni, “Increase of theta frequency is associated with reduction in regional cerebral blood flow only in subjects with mild cognitive impairment with higher upper alpha/low alpha EEG frequency power ratio,” Frontiers in Behavioral Neuroscience, vol. 7, article 188, 2013. View at Publisher · View at Google Scholar
  80. S. A. Taywade and R. D. Raut, “A review: EEG signal analysis with different methodologies,” in Proceedings of the National Conference on Innovative Paradigms in Engineering and Technology (NCIPET '12), pp. 29–31, 2014.
  81. R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata McGraw-Hill, New Delhi, India, 1998.
  82. W. O. Tatum, A. M. Husain, S. R. Benbadis, and P. W. Kaplan, Handbook of EEG Interpretation, Demos Medical Publishing, LLC, New York, NY, USA, 2008.
  83. S. Chatteriee and A. Miller, Biomedical Instrumentation System, Cengage Learning, Delmar, Del, USA, 2010.
  84. B. Hamadicharef, C. Guan, N. Hudson, E. C. Ifeachor, and S. Wimalaratna, “Performance evaluation and fusion of methods for early detection of Alzheimer Disease,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI '08), pp. 347–351, Sanya, China, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Sanei and J. A. Chambers, EEG Signal Procesing, John Wiley & Sons, New York, NY, USA, 2007.
  86. D. V. Moretti, C. Babiloni, G. Binetti et al., “Individual analysis of EEG frequency and band power in mild Alzheimer's disease,” Clinical Neurophysiology, vol. 115, no. 2, pp. 299–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects,” Clinical Neurophysiology, vol. 111, no. 10, pp. 1745–1758, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Habl, C. Bauer, C. Ziegaus, E. Lang, and F. Schulmeyer, “Can ICA help identify brain tumor related EEG signals,” pp. 609-614, http://users.ics.aalto.fi/ica2000/proceedings/0609.pdf.
  89. C. Guerrero-Mosquera, A. M. Trigueros, and A. Navia-Vazquez, “EEG signal processing for epilepsy,” Epilepsy–Histological, Electroencephalographic and Psychological Aspects, vol. 3, pp. 49–74, 2012. View at Google Scholar
  90. I. M. B. Núñez, EEG artifact dtection, 2010.
  91. G. N. G. Molina, “Direct brain-computer communication through scalp recorded EEG signals,” École Polytechnique Fédérale de Lausanne, 2004.
  92. A. Naït-Ali, Advanced Biosignal Processing, Springer, New York, NY, USA, 2009.
  93. D. Langlois, S. Chartier, and D. Gosselin, “An introduction to independent component analysis: InfoMax and FastICA algorithms,” Tutorials in Quantitative Methods for Psychology, vol. 6, no. 1, pp. 31–38, 2010. View at Google Scholar
  94. M. J. McKeown, C. Humphries, P. Achermann, A. A. Borbely, and T. J. Sejnowski, “A new method for detecting state changes in the EEG: exploratory application to sleep data,” Journal of Sleep Research, vol. 7, no. S1, pp. 48–56, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Zikov, S. Bibian, G. A. Dumont, M. Huzmezan, and C. R. Ries, “A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram,” in Proceedings of the IEEE Engineering in Medicine and Biology 24th Annual Conference and the Fall Meeting of the Biomedical Engineering Society, pp. 98–105, October 2002. View at Scopus
  96. V. Krishnaveni, S. Jayaraman, S. Aravind, V. Hariharasudhan, and K. Ramadoss, “Automatic identification and removal of ocular artifacts from EEG using wavelet transform,” Measurement Science Review, vol. 6, no. 4, pp. 45–57, 2006. View at Google Scholar
  97. P. S. Kumar, R. Arumuganathan, K. Sivakumar, and C. Vimal, “Removal of ocular artifacts in the EEG through wavelet transform without using an EOG reference channel,” International Journal of Open Problems in Computer Science and Mathematics, vol. 1, no. 3, pp. 188–200, 2008. View at Google Scholar
  98. V. Krishnaveni, S. Jayaraman, L. Anitha, and K. Ramadoss, “Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients,” Journal of Neural Engineering, vol. 3, no. 4, article 11, p. 338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Jahankhani, V. Kodogiannis, and K. Revett, “EEG signal classification using wavelet feature extraction and neural networks,” in Proceedings of the IEEE John Vincent Atanasoff International Symposium on Modern Computing (JVA '06), pp. 120–124, Sofia, Bulgaria, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. T. Akhtar and C. J. James, “Focal artifact removal from ongoing EEG—a hybrid approach based on spatially-constrained ICA and wavelet de-noising,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 4027–4030, Minneapolis, Minn, USA, September 2009. View at Publisher · View at Google Scholar
  101. M. T. Akhtar, C. J. James, and W. Mitsuhashi, “Modifying the spatially-constrained ICA for efficient removal of artifacts from EEG data,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '10), pp. 1–4, Chengdu, China, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Walters-Williams and Y. Li, “A new approach to denoising EEG signals-merger of translation invariant wavelet and ICA,” International Journal of Biometrics and Bioinformatics, vol. 5, no. 2, pp. 130–149, 2011. View at Google Scholar
  103. J. Walters-Williams and Y. Li, “Performance comparison of known ICA algorithms to a wavelet-ICA merger,” Signal Processing, vol. 5, no. 3, p. 80, 2011. View at Google Scholar
  104. N. Mammone, F. La Foresta, and F. C. Morabito, “Automatic artifact rejection from multichannel scalp EEG by wavelet ICA,” IEEE Sensors Journal, vol. 12, no. 3, pp. 533–542, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Inuso, F. La Foresta, N. Mammone, and F. C. Morabito, “Wavelet-ICA methodology for efficient artifact removal from Electroencephalographic recordings,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '07), pp. 1524–1529, Orlando, Fla, USA, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Jelles, P. Scheltens, W. M. van der Flier, E. J. Jonkman, F. H. L. da Silva, and C. J. Stam, “Global dynamical analysis of the EEG in Alzheimer's disease: Frequency-specific changes of functional interactions,” Clinical Neurophysiology, vol. 119, no. 4, pp. 837–841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Escudero, R. Hornero, D. Abásolo, and A. Fernández, “Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer's disease,” Medical Engineering & Physics, vol. 31, no. 7, pp. 872–879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Hornero, J. Escudero, A. Fernández, J. Poza, and C. Gómez, “Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer's disease,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 6, pp. 1658–1665, 2008. View at Publisher · View at Google Scholar
  109. O. N. Markand, “Organic brain syndromes and dementias,” Current Practice of Clinical Electroencephalography, vol. 3, pp. 378–404, 1990. View at Google Scholar
  110. J. Dauwels, F.-B. Vialatte, and A. Cichocki, “On the early diagnosis of Alzheimer's disease from EEG signals: a mini-review,” in Advances in Cognitive Neurodynamics II, pp. 709–716, Springer, 2011. View at Google Scholar
  111. J. Escudero, S. Sanei, D. Jarchi, D. Abásolo, and R. Hornero, “Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms,” Physiological Measurement, vol. 32, no. 8, pp. 1163–1180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Jeong, “Nonlinear dynamics of EEG in Alzheimer's disease,” Drug Development Research, vol. 56, no. 2, pp. 57–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. D. P. Subha, P. K. Joseph, R. Acharya, and C. M. Lim, “EEG signal analysis: a survey,” Journal of Medical Systems, vol. 34, no. 2, pp. 195–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. D. Abásolo, R. Hornero, C. Gómez, M. García, and M. López, “Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure,” Medical Engineering and Physics, vol. 28, no. 4, pp. 315–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Escudero, D. Abásolo, R. Hornero, P. Espino, and M. López, “Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy,” Physiological Measurement, vol. 27, no. 11, article 004, p. 1091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D: Nonlinear Phenomena, vol. 9, no. 1-2, pp. 189–208, 1983. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  117. A. Wolf, J. B. Swift, and H. L. a. Swinney, “Determining Lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  118. B. Hamadicharef, C. Guan, E. C. Ifeachor, N. Hudson, E. C. Ifeachor, and S. Wimalaratna, “Performance evaluation and fusion of methods for early detection of Alzheimer Disease,” in Proceedings of the 1st International Conference on BioMedical Engineering and Informatics (BMEI '08), pp. 347–351, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. G. T. Henderson, Early Detection of Dementia Using The Human Electroencephalogram, University of Plymouth, 2004.
  120. R. Ferenets, T. Lipping, A. Anier, V. Jantti, S. Melto, and S. Hovilehto, “Comparison of entropy and complexity measures for the assessment of depth of sedation,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 6, pp. 1067–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. P. Zhao, P. Van-Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. Ifeachor, “Characterization of EEGs in Alzheimer's disease using information theoretic methods,” in Proceedings of the 29th Annual International Conference of the IEEEon Engineering in Medicine and Biology Society (EMBC '07), pp. 5127–5131, Lyon, France, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Zhao, P. Van-Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. Ifeachor, “Characterization of EEGs in alzheimer's disease using information theoretic methods,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 5127–5131, Lyon , France, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, no. 6, Article ID 068102, 2002. View at Google Scholar · View at Scopus
  124. M. Costa, A. L. Goldberger, and C. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, no. 2, Article ID 021906, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  125. A. Subasi and M. I. Gursoy, “EEG signal classification using PCA, ICA, LDA and support vector machines,” Expert Systems with Applications, vol. 37, no. 12, pp. 8659–8666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. M. KavitaMahajan and M. S. M. Rajput, “A Comparative study of ANN and SVM for EEG classification,” International Journal of Engineering, vol. 1, no. 6, 2012. View at Google Scholar
  127. F. Vialatte, A. Cichocki, G. Dreyfus, T. Musha, T. M. Rutkowski, and R. Gervais, “Blind source separation and sparse bump modelling of time frequency representation of EEG signals: new tools for early detection of Alzheimer's disease,” in Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, pp. 27–32, Mystic, Conn, USA, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Besserve, K. Jerbi, F. Laurent, S. Baillet, J. Martinerie, and L. Garnero, “Classification methods for ongoing EEG and MEG signals,” Biological Research, vol. 40, no. 4, pp. 415–437, 2007. View at Google Scholar · View at Scopus
  129. G. Costantini, D. Casali, and M. Todisco, “An SVM based classification method for EEG signals,” in Proceedings of the 14th WSEAS International Conference on Circuits (ICC '10), pp. 107–109, July 2010. View at Scopus
  130. D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut, “Comparison of linear, nonlinear, and feature selection methods for EEG signal classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 141–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. E. C. Ifeachor, N. J. Outram, G. T. Henderson et al., “Nonlinear methods for biopattern analysis: Role and challenges,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '04), pp. 5400–5406, September 2004. View at Scopus
  132. C. Lehmann, T. Koenig, V. Jelic et al., “Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG),” Journal of Neuroscience Methods, vol. 161, no. 2, pp. 342–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. R. H. Chowdhury, M. B. Reaz, M. A. B. M. Ali, A. A. Bakar, K. Chellappan, and T. Chang, “Surface electromyography signal processing and classification techniques,” Sensors, vol. 13, no. 9, pp. 12431–12466, 2013. View at Publisher · View at Google Scholar
  134. A. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram, “Classification of finger movements for the dexterous hand prosthesis control with surface electromyography,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 608–618, 2013. View at Publisher · View at Google Scholar