Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 929163, 8 pages
http://dx.doi.org/10.1155/2014/929163
Research Article

Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 3G9

Received 11 March 2014; Accepted 4 May 2014; Published 9 June 2014

Academic Editor: Ya Cheng

Copyright © 2014 B. Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, New York, NY, USA, 2007.
  2. D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. H. White, “Measurement of single-cell dynamics,” Nature, vol. 465, no. 7299, pp. 736–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics, vol. 5, no. 2, Article ID 021501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Ateya, J. S. Erickson, P. B. Howell Jr., L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1485–1498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 7, no. 4, pp. 423–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. R. Wootton and A. J. Demello, “Microfluidics: exploiting elephants in the room,” Nature, vol. 464, no. 7290, pp. 839–840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yin and D. Marshall, “Microfluidics for single cell analysis,” Current Opinion in Biotechnology, vol. 23, no. 1, pp. 110–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annual Review of Biomedical Engineering, vol. 12, pp. 187–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, no. 7101, pp. 403–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. T. Roman, Y. Chen, P. Viberg, A. H. Culbertson, and C. T. Culbertson, “Single-cell manipulation and analysis using microfluidic devices,” Analytical and Bioanalytical Chemistry, vol. 387, no. 1, pp. 9–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Analytica Chimica Acta, vol. 649, no. 2, pp. 141–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Lindström and H. Andersson-Svahn, “Overview of single-cell analyses: microdevices and applications,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 10, no. 24, pp. 3363–3372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, “A microfabrication-based dynamic array cytometer,” Analytical Chemistry, vol. 74, no. 16, pp. 3984–3990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. B. M. Taff and J. Voldman, “A scalable addressable positive-dielectrophoretic cell-sorting array,” Analytical Chemistry, vol. 77, no. 24, pp. 7976–7983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Taff, S. P. Desai, and J. Voldman, “Electroactive hydrodynamic weirs for microparticle manipulation and patterning,” Applied Physics Letters, vol. 94, no. 8, Article ID 084102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Voldman, “Electrical forces for microscale cell manipulation,” Annual Review of Biomedical Engineering, vol. 8, pp. 425–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. Van Der Veen, and H. L. Ploegh, “A microengraving method for rapid selection of single cells producing antigen-specific antibodies,” Nature Biotechnology, vol. 24, no. 6, pp. 703–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Rettig and A. Folch, “Large-scale single-cell trapping and imaging using microwell arrays,” Analytical Chemistry, vol. 77, no. 17, pp. 5628–5634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays,” Analytical Chemistry, vol. 78, no. 14, pp. 4925–4930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 6, no. 11, pp. 1445–1449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. W.-H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1146–1151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W.-H. Tan and S. Takeuchi, “Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 8, no. 2, pp. 259–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Chung, C. A. Rivet, M. L. Kemp, and H. Lu, “Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array,” Analytical Chemistry, vol. 83, no. 18, pp. 7044–7052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kobel, A. Valero, J. Latt, P. Renaud, and M. Lutolf, “Optimization of microfluidic single cell trapping for long-term on-chip culture,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 10, no. 7, pp. 857–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Yamaguchi, T. Arakawa, N. Takeda, Y. Edagawa, and S. Shoji, “Development of a poly-dimethylsiloxane microfluidic device for single cell isolation and incubation,” Sensors and Actuators B: Chemical, vol. 136, no. 2, pp. 555–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Arakawa, M. Noguchi, K. Sumitomo, Y. Yamaguchi, and S. Shoji, “High-throughput single-cell manipulation system for a large number of target cells,” Biomicrofluidics, vol. 5, no. 1, Article ID 014114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Sochol, B. P. Casavant, M. E. Dueck, L. P. Lee, and L. Lin, “A dynamic bead-based microarray for parallel DNA detection,” Journal of Micromechanics and Microengineering, vol. 21, no. 5, Article ID 054019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. D. Sochol, M. E. Dueck, S. Li, L. P. Lee, and L. Lin, “Hydrodynamic resettability for a microfluidic particulate-based arraying system,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 12, no. 23, pp. 5051–5056, 2012. View at Publisher · View at Google Scholar · View at Scopus