Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 938348, 8 pages
http://dx.doi.org/10.1155/2014/938348
Research Article

miR-16-1 Promotes the Aberrant α-Synuclein Accumulation in Parkinson Disease via Targeting Heat Shock Protein 70

1Department of Neurology, General Hospital of Tianjin Medical University, No. 154, Anshan road, Heping District, Tianjin 300071, China
2Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Mongolia 010059, China

Received 25 April 2014; Accepted 22 May 2014; Published 23 June 2014

Academic Editor: Lin He

Copyright © 2014 Zhelin Zhang and Yan Cheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” The Journal of Clinical Investigation, vol. 115, no. 6, pp. 1449–1457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Wirdefeldt, H. Adami, P. Cole, D. Trichopoulos, and J. Mandel, “Epidemiology and etiology of Parkinson's disease: a review of the evidence,” European Journal of Epidemiology, vol. 26, no. 1, supplement, pp. S1–S58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Irizarry, W. Growdon, T. Gomez-Isla et al., “Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson's disease and cortical Lewy body disease contain α-synuclein immunoreactivity,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 4, pp. 334–337, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, “α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6469–6473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Chartier-Harlin, J. Kachergus, C. Roumier et al., “α-synuclein locus duplication as a cause of familial Parkinson's disease,” The Lancet, vol. 364, no. 9440, pp. 1167–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Kahle, “α-Synucleinopathy models and human neuropathology: similarities and differences,” Acta Neuropathologica, vol. 115, no. 1, pp. 87–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. G. Kholodilov, M. Neystat, T. F. Oo et al., “Increased expression of rat synuclein in the substantia nigra pars compacta identified by mRNA differential display in a model of developmental target injury,” Journal of Neurochemistry, vol. 73, no. 6, pp. 2586–2599, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. George, H. Jin, W. S. Woods, and D. F. Clayton, “Characterization of a novel protein regulated during the critical period for song learning in the zebra finch,” Neuron, vol. 15, no. 2, pp. 361–372, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Periquet, T. Fulga, L. Myllykangas, M. G. Schlossmacher, and M. B. Feany, “Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo,” Journal of Neuroscience, vol. 27, no. 12, pp. 3338–3346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. K. Auluck, H. Y. E. Chan, J. Q. Trojanowski, V. M. Lee, and N. M. Bonini, “Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease,” Science, vol. 295, no. 5556, pp. 865–868, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Klucken, Y. Shin, E. Masliah, B. T. Hyman, and P. J. McLean, “Hsp70 reduces α-synuclein aggregation and toxicity,” The Journal of Biological Chemistry, vol. 279, no. 24, pp. 25497–25502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. C. Luk, I. P. Mills, J. Q. Trojanowski, and V. M. Lee, “Interactions between Hsp70 and the hydrophobic core of α-synuclein inhibit fibril assembly,” Biochemistry, vol. 47, no. 47, pp. 12614–12625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Ambros, “MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing,” Cell, vol. 113, no. 6, pp. 673–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. B. J. Reinhart, F. J. Slack, M. Basson et al., “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,” Nature, vol. 403, no. 6772, pp. 901–906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. K. S. Kosik, “The neuronal microRNA system,” Nature Reviews Neuroscience, vol. 7, no. 12, pp. 911–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. Miska, E. Alvarez-Saavedra, M. Townsend et al., “Microarray analysis of microRNA expression in the developing mammalian brain,” Genome Biology, vol. 5, no. 9, p. R68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Hébert, K. Horré, L. Nicolaï et al., “Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6415–6420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Lee, R. C. Samaco, J. R. Gatchel, C. Thaller, H. T. Orr, and H. Y. Zoghbi, “miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis,” Nature Neuroscience, vol. 11, no. 10, pp. 1137–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson, “The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease,” Journal of Neuroscience, vol. 28, no. 53, pp. 14341–14346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kim, K. Inoue, J. Ishii et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Junn, K.-W. Lee, B.S. Jeong, T. W. Chan, J.-Y. Im, and M. M. Mouradian, “Repression of α-synuclein expression and toxicity by microRNA-7,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13052–13057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. W. Fewell, C. M. Smith, M. A. Lyon et al., “Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51131–51140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Gupta, V. L. Dawson, and T. M. Dawson, “What causes cell death in Parkinson's disease?” Annals of Neurology, vol. 64, supplement 2, pp. S3–S15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Jellinger, “Basic mechanisms of neurodegeneration: a critical update,” Journal of Cellular and Molecular Medicine, vol. 14, no. 3, pp. 457–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. U. Hartl and M. Hayer-Hartl, “Converging concepts of protein folding in vitro and in vivo,” Nature Structural and Molecular Biology, vol. 16, no. 6, pp. 574–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Bandopadhyay and J. de Belleroche, “Pathogenesis of Parkinson's disease: emerging role of molecular chaperones,” Trends in Molecular Medicine, vol. 16, no. 1, pp. 27–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. N. Witt, “Hsp70 molecular chaperons and Parkinson's disease,” Biopolymers, vol. 93, no. 3, pp. 218–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Cho, G. Liu, S. M. Jin et al., “Microrna-205 regulates the expression of parkinson's disease-related leucine-rich repeat kinase 2 protein,” Human Molecular Genetics, vol. 22, no. 3, pp. 608–620, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Miñones-Moyano, S. Porta, G. Escaramís et al., “MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function,” Human Molecular Genetics, vol. 20, no. 15, pp. 3067–3078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Asikainen, M. Rudgalvyte, L. Heikkinen et al., “Global microRNA expression profiling of Caenorhabditis elegans Parkinson's disease models,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 210–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Tranter, R. N. Helsley, W. R. Paulding et al., “Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation,” The Journal of Biological Chemistry, vol. 286, no. 34, pp. 29828–29837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Yin, F. N. Salloum, and R. C. Kukreja, “A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70,” Circulation Research, vol. 104, no. 5, pp. 572–575, 2009. View at Publisher · View at Google Scholar · View at Scopus