Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015 (2015), Article ID 306326, 9 pages
http://dx.doi.org/10.1155/2015/306326
Research Article

Histologic and Metabolic Derangement in High-Fat, High-Fructose, and Combination Diet Animal Models

1Department Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
2Department of Internal Medicine, School of Medicine, Hanyang University, Seoul, Republic of Korea
3Department of Pathology, College of Medicine, Eulji University, Seoul, Republic of Korea

Received 29 December 2014; Revised 11 March 2015; Accepted 26 April 2015

Academic Editor: Pietro Vajro

Copyright © 2015 Jai Sun Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Z. Larter and M. M. Yeh, “Animal models of NASH: getting both pathology and metabolic context right,” Journal of Gastroenterology and Hepatology, vol. 23, no. 11, pp. 1635–1648, 2008. View at Publisher · View at Google Scholar
  2. K. M. Flegal, C. L. Ogden, R. Wei, R. L. Kuczmarski, and C. L. Johnson, “Prevalence of overweight in US children: comparison of US growth charts from the Centers for Disease Control and Prevention with other reference values for body mass index,” American Journal of Clinical Nutrition, vol. 73, no. 6, pp. 1086–1093, 2001. View at Google Scholar · View at Scopus
  3. M. E. Rinella and R. M. Green, “The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance,” Journal of Hepatology, vol. 40, no. 1, pp. 47–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Collins, T. L. Martin, R. S. Surwit, and J. Robidoux, “Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics,” Physiology and Behavior, vol. 81, no. 2, pp. 243–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. Jun, “The role of diet in non-alcoholic fatty liver disease,” The Korean Journal of Gastroenterology, vol. 61, no. 5, pp. 243–251, 2013. View at Publisher · View at Google Scholar
  6. J. S. Lim, M. Mietus-Snyder, A. Valente, J. Schwarz, and R. H. Lustig, “The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome,” Nature Reviews Gastroenterology & Hepatology, vol. 7, no. 5, pp. 251–264, 2010. View at Publisher · View at Google Scholar
  7. L. Tappy and K. Le, “Metabolic effects of fructose and the worldwide increase in obesity,” Physiological Reviews, vol. 90, no. 1, pp. 23–46, 2010. View at Publisher · View at Google Scholar
  8. T. Kawasaki, K. Igarashi, T. Koeda et al., “Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis,” The Journal of Nutrition, vol. 139, no. 11, pp. 2067–2071, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. E. Kleiner, E. M. Brunt, M. van Natta et al., “Design and validation of a histological scoring system for nonalcoholic fatty liver disease,” Hepatology, vol. 41, no. 6, pp. 1313–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Lowndes, S. Sinnett, S. Pardo et al., “The effect of normally consumed amounts of sucrose or high fructose corn syrup on lipid profiles, body composition and related parameters in overweight/obese subjects,” Nutrients, vol. 6, no. 3, pp. 1128–1144, 2014. View at Publisher · View at Google Scholar
  11. L. Hebbard and J. George, “Animal models of nonalcoholic fatty liver disease,” Nature Reviews Gastroenterology & Hepatology, vol. 8, no. 1, pp. 35–44, 2010. View at Publisher · View at Google Scholar
  12. B. W. Smith and L. A. Adams, “Non-alcoholic fatty liver disease,” Critical Reviews in Clinical Laboratory Sciences, vol. 48, no. 3, pp. 97–113, 2011. View at Publisher · View at Google Scholar
  13. M. F. Abdelmalek, A. Suzuki, C. Guy et al., “Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease,” Hepatology, vol. 51, no. 6, pp. 1961–1971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Ouyang, P. Cirillo, Y. Sautin et al., “Fructose consumption as a risk factor for non-alcoholic fatty liver disease,” Journal of Hepatology, vol. 48, no. 6, pp. 993–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Miele, V. Valenza, G. La Torre et al., “Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease,” Hepatology, vol. 49, no. 6, pp. 1877–1887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Spruss, G. Kanuri, S. Wagnerberger, S. Haub, S. C. Bischoff, and I. Bergheim, “Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice,” Hepatology, vol. 50, no. 4, pp. 1094–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Kohli, M. Kirby, S. A. Xanthakos et al., “High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis,” Hepatology, vol. 52, no. 3, pp. 934–944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M.-Q. Zaman, V. Leray, J. le Bloc'h, C. Thorin, K. Ouguerram, and P. Nguyen, “Lipid profile and insulin sensitivity in rats fed with high-fat or high-fructose diets,” The British Journal of Nutrition, vol. 106, supplement 1, pp. S206–S210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. F. Abdelmalek, M. Lazo, A. Horska et al., “Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes,” Hepatology, vol. 56, no. 3, pp. 952–960, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-H. Kang, G. Tsuyoshi, I.-S. Han, T. Kawada, Y. M. Kim, and R. Yu, “Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet,” Obesity, vol. 18, no. 4, pp. 780–787, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. H. Tetri, M. Basaranoglu, E. M. Brunt, L. M. Yerian, and B. A. Neuschwander-Tetri, “Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 295, no. 5, pp. G987–G995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. F. de Moura, C. Ribeiro, J. A. de Oliveira, E. Stevanato, and M. A. R. de Mello, “Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols,” British Journal of Nutrition, vol. 101, no. 8, pp. 1178–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus